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ABSTRACT

We present new computations of the equilibrium and non-equilibrium cooling

efficiencies and ionization states for low-density radiatively cooling gas containing

cosmic abundances of the elements H, He, C, N, O, Ne, Mg, Si, S, and Fe. We

present results for gas temperatures between 104 and 108 K, assuming dust-free

and optically thin conditions, and no external radiation. For non-equilibrium

cooling we solve the coupled time-dependent ionization and energy loss equations

for a radiating gas cooling from an initially hot, & 5 × 106 K, equilibrium state,

down to 104 K. We present results for heavy element compositions ranging from

10−3 to 2 times the elemental abundances in the Sun. We consider gas cooling

at constant density (isochoric) and at constant pressure (isobaric). We calculate

the critical column densities and temperatures at which radiatively cooling clouds

make the dynamical transition from isobaric to isochoric evolution. We construct

ion ratio diagnostics for the temperature and metallicity in radiatively cooling

gas. We provide numerical estimates for the maximal cloud column densities for

which the gas remains optically thin to the cooling radiation. We present our

computational results in convenient on-line figures and tables.

Subject headings: ISM:general – atomic processes – plasmas – absorption lines –

intergalactic medium

1. Introduction

The collisionally controlled ionization states and radiative cooling rates of hot (104 −

108 K) low-density “coronal” gas clouds are crucial quantities in the study of the diffuse
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interstellar and intergalactic medium, including hot gas in supernova remnants, the Galac-

tic halo, active galactic nuclei, galaxy groups and clusters, and warm/hot “baryonic reser-

voirs” in intergalactic clouds and filaments. In this paper we present new computations

of the equilibrium and non-equilibrium cooling efficiencies and ionization states for radia-

tively cooling gas clouds with temperatures between 104 and 108 K. Our main emphasis is

on the non-equilibrium cooling and ionization states that occur when an initially hot gas

cools radiatively below ∼ 5 × 106 K. Below this temperature, cooling can become rapid

compared to ion-electron recombination, and the gas at any temperature tends to remain

“over-ionized” compared to gas in collisional ionization equilibrium (CIE). Because the en-

ergy losses below ∼ 107 K are dominated by atomic and ionic line emissions from many

species, the non-equilibrium cooling rates also differ (are suppressed for over-ionized gas)

compared to equilibrium cooling. The “recombination lag” and departures from equilibrium

depend on the abundances of the heavy elements, and we present results for compositions

ranging from 10−3 to 2 times the elemental abundances in the Sun. We include H, He, C,

N, O, Ne, Mg, Si, S, and Fe, and we calculate the ion fractions as functions of temperature,

for both equilibrium and non-equilibrium cooling, for all ionization stages of these elements.

The non-equilibrium radiative cooling of hot (> 104 K), highly-ionized gas, with em-

phasis on the associated time-dependent ionization of the metal ions, is a classical problem

first investigated by Kafatos (1973), and subsequently by several authors including Shapiro

& Moore (1976), Edgar & Chevalier (1986), Schmutzler & Tscharnuter (1993), Sutherland

& Dopita (1993), and Smith et al. (1996). Time dependent cooling in colder (T . 104 K)

neutral hydrogen gas was studied earlier by Bottcher et al. (1970), Jura & Dalgarno (1972),

and Schwarz et al. (1972) (see also Dalgarno & McCray [1972]). These investigations demon-

strated that below a few 106 K recombination lags can indeed lead to significant departures

from CIE states and the associated equilibrium cooling rates. Computations of hot gas

cooling efficiencies and ionization states assuming CIE have been presented in many pa-

pers dating back to House (1964), Tucker & Gould (1966), Allen & Dupree (1969), Cox &

Tucker (1969), Jordan (1969), followed by Raymond et al. (1976), Shull & van Steenberg

(1982), Gaetz & Salpeter (1983), Arnaud & Rothenflug (1985), Boehringer & Hensler (1989),

and more recently Sutherland & Dopita (1993), Landi & Landini (1999), and Benjamin et

al. (2001).

In this paper we reexamine the fundamental problem of non-equilibrium ionization in a

time-dependent radiatively cooling gas. We focus on the behavior for pure radiative cooling

with no external sources of heat or photoionization. Recombination lags and non-equilibrium

ionization also occur in an initially hot gas undergoing rapid expansion and adiabatic cooling

(Breitschwerdt & Schmutzler 1994; 1999). We do not consider such dynamical effects here.
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Our work is motivated by ultraviolet (UV) and X-ray metal absorption-line spectroscopy

of hot gas in the Galactic halo (e.g., Sembach & Savage 1992; Spitzer 1996), including, more

recently, in discrete ionized “high-velocity clouds” (Savage et al. 2002; Fox et al. 2004, 2005,

Fox, Savage, & Wakker 2006, see also Sternberg, McKee, & Wolfire 2002; Gnat & Sternberg

2004; Maller & Bullock 2004). We are also motivated by recent Hubble Space Telescope

(HST), Far Ultraviolet Spectroscopic Explorer (FUSE), Chandra, and XMM-Newton, detec-

tions and observations of hot gas around the Galaxy (Collins et al. 2005; Fang et al. 2006),

and/or of gas that may be part of a 105-107 K “warm/hot intergalactic medium” (WHIM)

(Tripp, Savage, & Jenkins 2000; Shull, Tumlinson, & Giroux 2003; Richter et al. 2004; Sem-

bach et al. 2004; Soltan, Freyberg, & Hasinger 2005; Nicastro et al. 2005; Savage et al. 2005,

Williams et al. 2006; see however Rasmussen et al. 2006). This includes the temperature

range where departures from equilibrium cooling are expected to be important. An inter-

galactic shock heated WHIM is expected to be a major reservoir of baryons in the low redshift

universe (Cen & Ostriker 1999; Davé et al. 2001; Furlanetto et al. 2005). Important ions for

the detection of such gas include C IV, N V, O VI, O VII, O VIII, Si III, Si IV, Ne VIII, and

Ne IX.

The early discussions of Kafatos (1973) and Shapiro & Moore (1976) focused on time-

dependent isochoric (constant density) cooling at a single metallicity. Sutherland & Dopita

(1993) calculated isobaric (constant pressure) cooling efficiencies for a range of metallicities,

but presented limited results for the time-dependent ion-fractions, and did not consider

isochoric cooling. Schmutzler & Tscharnuter (1993) considered isochoric cooling for a range

of metallicities, and presented ion-fractions only for solar metallicity gas. They presented

limited results for isobaric cooling. In our calculations, we use up-to-date atomic data, and

we present complete results for the time-dependent ion fractions and cooling efficiencies,

for both isochoric and isobaric evolutions, for a wide range of metallicities. Because of

the “PdV ” work, isobaric cooling is less rapid than isochoric cooling, so departures from

equilibrium are somewhat smaller in the isobaric case.

We consider metallicities ranging from 10−3 to twice the solar abundances of the heavy

elements. In our calculations we assume that any initial dust is rapidly destroyed (e.g. by

thermal sputtering) on a time-scale that is short compared to the initial cooling rate (Smith

et al. 1996), and we consider dust-free cooling at fixed gas-phase elemental abundances. The

sensitivity of the cooling efficiencies to the metallicity was studied by Boehringer & Hensler

(1989) for equilibrium cooling, and by Schmutzler & Tscharnuter (1993) and Sutherland and

Dopita (1993) for non-equilibrium conditions as well. Time-dependent effects are enhanced

(diminished) as the cooling efficiencies are increased (reduced) for larger (smaller) gas-phase

abundances of the heavy elements. Thus, recombination lags are more significant as the

metallicity is increased. For a low-density gas, the non-equilibrium ion fractions and cooling
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efficiencies are independent of the gas density or pressure, because the ratio of the cooling

and recombination times is independent of density. The density scales out of the problem.

If the gas is assumed to cool, at either constant density or constant pressure, from an initial

equilibrium state at high temperature, the only remaining free parameter in the problem is

the metallicity Z.

We present results for the optically thin limit in which reabsorption of diffuse “self-

radiation” may be neglected. We verify previous findings that trapping of hydrogen and

helium recombination radiation, in optically thick clouds has only a small effect on the

cooling and resulting ionization states. We also provide estimates of the maximal cloud

column densities for which reabsorption of radiation from the metals (lines and continua)

may be neglected in computations of the gas cooling efficiencies. Elsewhere, we will consider

the effects of external fields on the non-equilibrium evolution of radiatively cooling gas. The

inclusion of such radiation will introduce a pressure/density dependence via the ratio of the

photoionization and recombination times.

In a separate paper we will present computations of the integrated metal ion “cooling

columns” produced in steady flows of cooling gas (e.g. Edgar & Chevalier 1986; Dopita &

Sutherland 1996; Heckman et al. 2002) including the effects of “upstream” cooling radiation

on the “downstream” ionization states. Such flows occur, for example, in the radiative

(isobaric) cooling layers behind steady shock waves (Shull & McKee 1979; Draine & Mckee

1993).

The outline of our paper is as follows. In §2 we write down the basic equations that we

solve in our computations, and we describe our numerical method. In §3 we discuss isochoric

versus isobaric cooling, and we derive critical cloud column densities and temperatures at

which the dynamical transition from isobaric to isochoric cooling occurs. In §4 we present

our computations of the ionization states as functions of gas temperature, for both CIE

and non-equilibrium cooling. For time-dependent ionization we present results for both

isochoric and isobaric evolutions. In §5 we present our computations of the radiative cooling

efficiencies. We compare the CIE and non-equilibrium cooling efficiencies, and determine

the temperatures below which non-equilibrium effects become important for each assumed

metallicity. In this paper we have generated a large number of figures and tables containing

results for metallicities ranging from 10−3 to 2 times solar. Some of the figures and tables

appear in the main text, and some are available as online data files. Our data sets can be

used to construct ion density-ratio diagnostics for radiatively cooling gas for a wide range of

conditions. As an example, in §6 we discuss the evolution of the density ratios C IV/O VI

versus N V/O VI in radiatively cooling gas. We summarize in §7.
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2. Basic Equations and Processes

We are interested in studying the evolving ionization states of radiatively cooling gas,

which is initially heated to some high temperature T0 & 5 × 106 K, and then cools from

an initial (equilibrium) ionization state. In the absence of continued heating and ionization

the ions recombine as the gas cools, and the overall ionization state decreases with time.

If the gas cools faster than it recombines, non-equilibrium effects become significant, and

the gas remains over-ionized throughout the cooling. Non-equilibrium ionization leads to

a suppression of the cooling rates. We compute this coupled time-dependent evolution for

clouds cooling at constant density or constant pressure, for a wide range of metallicities.

Non-equilibrium effects are most important at high metallicity, where the cooling times are

shortest.

2.1. Ionization

In our numerical computations we follow the time-dependent ionization of an opti-

cally thin “parcel” of cooling gas, given an initial ionization state at an initial temperature

T0. We consider all ionization stages of the elements H, He, C, N, O, Ne, Mg, Si, S, and

Fe. The temperature-dependent ionization and recombination processes that we include

are collisional ionization by thermal electrons (Voronov 1997), radiative recombination (Al-

drovandi & Pequignot 1973; Shull & van Steenberg 1982; Landini & Monsignori Fossi 1990;

Landini & Fossi 1991; Pequignot, Petitjean, & Boisson 1991; Arnaud & Raymond 1992;

Verner et al. 1996), dielectronic recombination (Aldrovandi & Pequignot 1973; Arnaud &

Raymond 1992; Badnell et al. 2003, Badnell 2006; Colgan et al. 2003, Colgan, Pindzola,

& Badnell 2004, 2005; Zatsarinny et al. 2003, 2004a, 2004b, 2005a, 2005b, 2006; Altun et

al. 2004, 2005, 2006; Mitnik & Badnell 2004), and neutralization and ionization by charge

transfer reactions with hydrogen and helium atoms and ions (Kingdon & Ferland fits1, based

on Kingdon & Ferland 1996, Ferland et al. 1997, Clarke et al. 1998, Stancil et al. 1998; Ar-

naud & Rothenflug 1985). Our atomic data set is the up-to-date compilation used in the

steady-state photoionization codes ION (Netzer et al. 2005; and private communication) and

Cloudy (Ferland et al. 1998).

We assume that the gas is dust-free (see below) and exclude neutralization processes

by dust grains. Our code can also account for photoionization by a steady or time-varying

external radiation field. However, in the computations presented here we exclude such radi-

1See: http://www-cfadc.phy.ornl.gov/astro/ps/data/cx/hydrogen/rates/ct.html
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ation.

The time-dependent equations for the ion abundance fractions, xi, of element m in

ionization stage i are,

dxi/dt = xi−1 [qi−1ne + Γi−1 + kH
↑i−1nH+ + kHe

↑i−1nHe+]

+xi+1 [αi+1ne + kH
↓i+1nH0 + kHe

↓i+1nHe0 ]

−xi [(qi + αi)ne + Γi + kH
↓inH0 + kHe

↓i nHe0 + kH
↑inH+ + kHe

↑i nHe+] .

(1)

In this expression, qi and αi are the rate coefficients for collisional ionization and recombi-

nation (radiative plus dielectronic), and kH
↓i, kHe

↓i , kH
↑i, and kHe

↑i are the rate coefficients for

charge transfer reactions with hydrogen and helium that lead to ionization or neutralization.

The quantities nH0 , nH+, nHe0 , nHe+ , and ne are the particle densities (cm−3) for neutral hy-

drogen, ionized hydrogen, neutral helium, singly ionized helium, and electrons, respectively.

Γi are the photoionization rates of ions i, due to externally incident radiation. Here, we set

Γi = 0.

For each element m, the ion fractions xi ≡ ni,m/(nHAm) must at all times satisfy

∑

xi = 1 (2)

where ni,m is the density (cm−3) of ions in ionization stage i of element m, nH is total density

of hydrogen nuclei, and Am is the abundance of element m relative to hydrogen. The sum

is over all ionization stages of the element.

In our time-dependent code we can explicitly account for the effects of trapping of

hydrogen and helium recombination radiation by switching appropriately from “case A” to

“case B” recombination, depending on the total cloud column density and temperature. As

we discuss in the Appendix, we find that such trapping has generally only a small effect

on the ionization states of the metals in the radiatively cooling gas. We therefore present

results assuming optically thin case A conditions throughout. We also neglect reabsorption

of line and continuum radiation emitted by metals in the cooling gas. In the Appendix we

provide computational estimates of the maximal column densities for which reabsorption of

the cooling radiation may be ignored.

2.2. Cooling

The ionization equations (1) are coupled to an energy equation for the time-dependent

heating and cooling, and resulting temperature variation. Here we are interested in clouds

undergoing pure radiative cooling with no heat sources.
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For an ideal gas, the gas pressure P = NkBT/V , and the internal thermal energy

U = 3/2 NkBT , where T is the gas temperature, V is the total volume, N is the total

number of particles in the system, and kB is the Boltzmann constant. If dQ is an amount of

heat lost (or gained) by the thermal electron gas, then

dQ = dU + PdV =

(

3

2
+ s

)

(NkBdT + kBTdN). (3)

where

s =

{

0 , isochoric cooling, dV = 0

1 , isobaric cooling, dP = 0
(4)

For pure radiative cooling, with no heating, dQ ≡ −nenHΛ(T, xi, Z)V dt where Λ(T, xi, Z)

is the electron cooling efficiency (erg s−1 cm3), which depends on the gas temperature, the

ionization state, and the total abundances of the heavy elements specified by the metallic-

ity Z. The electron cooling efficiency includes the removal of electron kinetic energy via

recombinations with ions, collisional ionizations, collisional excitations followed by prompt

line emissions, and thermal bremsstrahlung. For the low density “coronal limit” that we

consider, Λ is independent of the gas density or pressure.

In equation (3) we do not include the ionization potential energies as part of the total

internal energy (e.g. Schmutzler & Tscharnuter 1993) since dQ refers to the heat lost by

the thermal electrons. In our definition of Λ, therefore, the ionization potential energy

that is released as recombination radiation does not appear. Only the kinetic energy of

the recombining electrons contributes to the cooling efficiency2. On the other hand, kinetic

energy removed via collisional ionization is included in our Λ. If ionization potential energy

is considered as part of the total internal energy, then collisional ionization does not lead

to a net energy loss, since the kinetic energy removed is merely stored as potential energy.

Either way of accounting for the energy losses leads to the same temperature versus time

relation T (t).

It follows from equation (3) that the gas temperature declines at a rate given by (e.g.,

Kafatos 1973),
dT

dt
= −

nenHΛ(T, xi, Z)

(3/2 + s)nkB

−
T

N

dN

dt
(5)

where n ≡ N/V is the total particle density of the gas. Because of the PdV work, the

temperature declines more slowly for isobaric (s = 1) cooling compared to isochoric (s = 0)

cooling.

2The recombination radiation energy εr = εKE + εI, where εKE is the thermal kinetic energy of the

recombining electron, and εI is the ionization energy of the recombined ion. In our Λ we include only εKE.
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The second term in equation (5) reflects the relative change in the total number of parti-

cles in the system. At temperatures & 104 K, where the hydrogen and helium remain ionized,

the number of particles remains approximately constant and this term may be neglected.

It plays a role at lower temperatures as the hydrogen recombines (Kafatos 1973). For a

primordial helium abundance, AHe ≡ nHe/nH = 1/12 (Ballantyne, Ferland, & Martin 2000),

the temperature declines at a rate

dT

dt
'

nΛ

4.34 × (3/2 + s)kB

, (6)

for gas in which the hydrogen and helium are fully ionized.

Equation (5) can also be expressed as (e.g., Shapiro & Moore 1976),

3

2

dP

dt
−

5

2

P

ρ

dρ

dt
= −nenHΛ(T, xi, Z) (7)

where ρ = µn is the mass density of the gas, and µ is the mean mass per particle. For

hydrogen and helium fully ionized, and a primordial helium abundance, µ = 16/27 mH

where mH is the proton mass.

Equations (1) and (5) imply that in the absence of external radiation (Γi = 0) the

derivatives of the ion fractions with respect to temperature, dxi/dT ≡ (dxi/dT )(dT/dt),

are independent of the gas density or pressure. Because collisional ionization, electron-ion

recombination, hydrogen and helium charge-transfer reactions, and the gas cooling processes

are all “two-body” interactions, with rates per unit volume proportional to n2, the density

dependence divides out. The solutions for the ion fractions as functions of the instantaneous

gas temperature, xi(T ), are therefore independent of the assumed gas density or pressure.

Given a set of non-equilibrium ion abundances, xi(T ), and an assumed metallicity Z, we

use the cooling functions included in Cloudy (version 06.02, Ferland et al. 1998) to calculate

Λ(T, xi, Z). We present results for Z ranging from 10−3 to 2 times solar. For Z = 1 we

adopt the elemental abundances for C, N, O, Mg, Si, S, and Fe reported by Asplund et

al. (2005a) for the photosphere of the Sun. An exception is Ne, for which we adopt the

“enhanced” abundance recommended by Drake & Testa (2005)3. We list our assumed solar

abundances in Table 1. In all computations we assume a primordial helium abundance

AHe = 1/12, independent of Z. The elements we include are the dominant coolants over the

entire temperature range we study. Cooling by other elements is negligible.

3An enhanced Ne abundance may reconcile the “new” Asplund photospheric abundances with solar models

and helioseismology (Bahcall, Basu, & Serenelli 2005; Anita & Basu 2005; but see Asplund et al. 2005b;

Schmelz et al. 2005). See, however, Ayres et al. (2006).
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Non-equilibrium effects become important when the cooling time

tc ≡
T

|dT/dt|
'

4.34 × (3/2 + s)kBT

nΛ(T, xi, Z)
(8)

becomes short compared to the recombination time for an ion i,

tr,i '
1

nαtot
i

, (9)

where αtot
i is the total recombination coefficient at the temperature T . The ionization state

remains close to “collisional ionization equilibrium” (CIE) when tc/tr,i >> 1 for the most

abundant ions at the given temperature. Non-equilibrium effects become significant when

tc/tr,i < 1.

Because different ions have different recombination times, the recombination-lag is not

similar for all ions. Ions with longer recombination times, in particular the helium-like ions,

may be expected to persist over a wider range of temperatures when out of equilibrium.

Crucially, the ratios tc/tr,i are independent of the gas density or pressure, so that depar-

tures from CIE are independent of the assumed gas density or pressure, for both isochoric

or isobaric cooling. However, because tc is shorter for isochoric cooling, non-equilibrium

effects may be expected to be somewhat more pronounced for isochoric cooling compared to

isobaric cooling.

The primary, and essentially only, “free parameter” in the problem is the metallicity

Z of the gas, through its control of Λ and the cooling time. A higher Z leads to enhanced

metal line cooling, and larger departures from CIE, and vice versa.

In our computations we assume that the gas is dust-free, and we do not consider cooling

via gas-grain collisions, a process that can dominate the total cooling at high temperatures

if a high dust mass can be maintained (Ostriker & Silk 1973, Draine 1981). The neglect of

dust is appropriate when the dust sputtering destruction time scale, ts, is shorter than the

initial cooling rate, tc, so that any initial dust is destroyed before appreciable gas cooling

occurs. Here we rely on the computations of Smith et al. (1996) who found that ts/tc < 1

for T & 3× 106 K (see their Fig. 7). In our calculations we consider gas cooling from initial

temperatures greater than this, and we assume that the dust is instantaneously destroyed.

The gas then evolves with constant gas-phase elemental abundances specified by the assumed

initial metallicity Z.
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2.3. Numerical Procedure

For the atomic elements that we include, equations (1) and (5) are a set of 103 coupled

ordinary differential equations (ODEs). In our numerical procedure we advance the isochoric

solutions in small pressure steps ∆P = ε P where ε . 0.05, and P is the current pressure,

associated with a temperature T (P ). For isobaric conditions, we advance the solutions

in small density steps ∆ρ = ε ρ, where ρ is the current mass density, associated with a

temperature T (ρ).

For any T we compute the total cooling rate by passing the current (non-equilibrium)

ionization fractions xi(T ) to the Cloudy cooling functions. We then use equation (7) to

compute the time interval ∆t associated with pressure change ∆P (or density change ∆ρ).

We then integrate equations (1) over the time interval ∆t using a Livermore ODE solver4

(Hindmarsh 1983). When integrating the ionization equations (1), we assume that over the

time step ∆t, the pressure (or density) evolves linearly with time. In the integrations, the

estimated local errors on the fractional abundances were controlled so as to be smaller than

10−6, 10−5, and 10−4 for hydrogen, helium, and metal-ions, respectively.

The above procedure is repeated with the new values of the ionization fractions, xi(T +

∆T ), down to a minimum temperature Tlow. Here we set Tlow = 104 K. We verify convergence

by re-running the computation at higher resolution (smaller ε), and confirming that the

resulting ionization and cooling rates as functions of time remain unaltered.

3. Isochoric Versus Isobaric Cooling

A gas cloud will cool isochorically (i.e., at constant mass-density and volume) when the

cooling time as defined by equation (8) is short compared to the dynamical time

td ≡
D

cs

(10)

where D is the cloud diameter, and cs =
√

kBT/µ is the sound speed. Cooling is isobaric (i.e.,

occurs at constant pressure and decreasing volume) when the cooling time is long compared

to the dynamical time.

4This package integrates initial value problems for stiff or non-stiff systems, and switches automatically

between stiff and non-stiff methods as necessary. See: http://www.netlib.org/odepack/
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The dynamical evolution is therefore determined by the ratio

tc
td

' 4.34 ×
(3/2 + s)(kBT )3/2

µ1/2nΛD
. (11)

Cooling is isochoric when tc/td << 1 and is isobaric when tc/td >> 1. Equation (11) shows

that for a given cloud size and density the cooling is isobaric if the temperature is sufficiently

high. This is because T 3/2/Λ generally increases rapidly with increasing temperature (see

§5). Conversely, for a given temperature and density, the cooling is isochoric for sufficiently

large D.

For isochoric cooling, D and n remain constant with time. For these conditions tc/td ∝

T 3/2/Λ, which generally decreases as the gas cools. Hence, cooling that is initially isochoric

remains isochoric.

For isobaric cooling, a spherical cloud with initial diameter D0, density n0, and temper-

ature T0, will contract to a size D = D0(T/T0)
1/3 with density n = n0T0/T after cooling to a

temperature T . Thus, as the cloud cools and contracts tc/td ∝ T 13/6/Λ. This ratio decreases

rapidly as the gas cools, so that a transition to isochoric cooling must eventually occur.

The transition from isobaric to isochoric cooling occurs at a critical cloud size, Dtr, and

temperature, Ttr, at which tc ' td. It follows from equation (11) that the transition occurs

at a critical column density

Dtrn ∼= 10 k
3/2

B µ−1/2 T
3/2
tr

Λ(Ttr)

(Z=1)
∼= 40 × T 2.04

6,tr pc cm−3 (12)

where n is the gas density. Given that non-equilibrium effects reduce the cooling efficiencies

by only factors a few (see §5) compared to CIE cooling, we use the CIE cooling efficiencies,

Λeq, in equation (12) to estimate Dtr and Ttr. The resulting estimates for the critical sizes

and temperatures are then independent of initial conditions. For the numerical evaluation

in equation (12) we use the power-law approximation ΛZ=1
eq = 2.3× 10−19 T−0.54 erg cm3 s−1

for equilibrium cooling at solar metallicity (see §5).

For a cloud that initially cools isobarically at pressure P0, from an initial diameter D0

and temperature T0, it then follows that

D0P0

T
1/3

0

∼= 10 k
5/2

B µ−1/2 T
13/6
tr

Λ(ttr)

(Z=1)
∼= 4 × 107 T 2.7

6,tr

pc (cm−3 K)

(106 K)1/3
(13)

which provides an implicit relation for the temperature, Ttr, at which the transition to

isochoric cooling occurs (cf. Edgar & Chevalier 1986). The numerical evaluation is for the

power-law cooling efficiency at solar metallicity.
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In Figure 1 we plot Dtrn versus Ttr (left panel), and Ttr versus the parameter x0 ≡

D0P0/T
1/3

0 (right panel) as given by equations (12) and (13). We present results for metal-

licities Z ranging from 10−3 to 2 times solar, assuming the CIE cooling efficiencies we compute

in §5.

In Figure 1a, the cooling for each Z is isochoric for temperatures and cloud column

densities to the left and above of the curves. The cooling is isobaric to the right and

below the curves. The dotted line in Figure 1a is the power-law approximation given in

equation (12). The arrows in Figure 1a indicate the direction in which the gas evolves

as it cools. For isochoric cooling the column Dn remains constant, and the gas cools along

horizontal trajectories. For isobaric cooling Dn ∝ T−2/3, as indicated by the inclined arrows,

showing that the gas must eventually make the transition to isochoric cooling. For example,

a condensation with diameter D = 10 kpc, density n = 10−5 cm3, and temperature T =

106 K (corresponding to a thermal pressure P = 10 cm−3 K) cools isobarically, since Dn =

0.1 pc cm−3, whereas for this temperature Dtrn = 40 pc cm−3 for Z = 1, or 103 pc cm−3 for

Z < 10−2.

In Figure 1b, Ttr is the temperature at which the transition from isobaric to isochoric

cooling occurs, given an initial state defined by the parameter x0. In computing Ttr we again

use the equilibrium cooling efficiencies for the different values of Z. The dotted line in Figure

1b shows the power-law approximation for Z = 1 as given in equation (13). For our above

example (with D = 10 kpc, P = 10 cm3 K, T = 106 K), the parameter x0 = 105, so that the

initial isobaric condensation will begin cooling isochorically at Ttr = 105 K for Z = 1, or at

4 × 104 K for Z < 10−2.

As we show in the Appendix, a cooling gas cloud remains optically thin up to column

densities that are much greater than the critical transition columns in Figure 1. Expres-

sions (12) and (13), and the curves in Figure 1 are therefore of broad applicability for

determining the isobaric versus isochoric dynamical evolution for radiatively cooling clouds.

4. Ionization Fractions

We have carried out computations of the collisionally controlled ionization states of the

elements H, He, C, N, O, Ne, Mg, Si, S, and Fe, as functions of gas temperature for three

sets of assumptions. First we assume CIE imposed at all T . Then we consider the non-

equilibrium ionization states as functions of the time-dependent temperature for radiatively

cooling gas, for constant pressure and constant density evolutions. Our results are displayed

in Figure 2 and listed in tabular form in Tables 2-4, and in additional tables and figures that
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we describe below.

The left-hand panels of Figure 2 show our results for the CIE ion fractions xeq
i (T ).

Each panel displays the ionization stages of a particular element. In our CIE computations

we have integrated the time-dependent equations (1) to the equilibrium states reached at

late times when the formation and destruction rates for each ion are equal. We performed

these time integrations at fixed temperatures T ranging from 104 to 108 K. For purposes

of comparison with our non-equilibrium computations, in Figure 2 we display results for

temperatures between 104 and 5× 106 K only. Results for higher temperatures, up to 108 K

where nearly all of the ions become fully stripped, are given in Table 2. We verified that the

CIE solutions we obtained by time-integration are identical to those found by solving the set

of algebraic equations for xi obtained by setting dxi/dt = 0 in equation (1), as appropriate

for steady state5.

For an ionized hydrogen gas, the CIE ion fractions are independent of the metallicity Z,

and are “universal” functions of the gas temperature T , as determined by the microscopic

steady-state balance between electron impact collisional ionization, electron-ion recombina-

tion, and charge transfer6. Our CIE solutions, and in particular the shapes and peak positions

of the xeq
i (T ) curves, are in excellent agreement with previous computations available in the

literature (see §1). Our CIE ion fractions differ only slightly from the widely quoted results

of Sutherland & Dopita (1993). For example, as found by Sutherland & Dopita for carbon

(see their Fig. 3), x(C3+) peaks at a value of 0.3 around a narrow temperature range close

to 105 K, whereas x(C4+) is close to 1 for a broad temperature range from ∼ 1.5 × 105 K

to ∼ 7 × 105 K. The widths of the xeq
i (T ) curves reflect the magnitudes of the ionization

potentials of the ions. For example, C4+, N5+, and O6+ persist for a wide range of tempera-

tures due to the increase in thermal energy scale that is required to remove the inner K-shell

electrons.

The right-hand panels of Figure 2 display our results for non-equilibrium ionization

in radiatively cooling gas for solar (Z = 1) composition. For time-dependent cooling the

behavior depends on the initial conditions. Here we assume that the gas is cooling from an

initially hot, T > 5×106 K, equilibrium state. For such high temperatures the cooling times

are long, and there is generally sufficient time for the gas to reach CIE before appreciable

5We solved the algebraic equations using both Cloudy (Ferland et al. 1998) and ION (Netzer et al. 2004)

assuming identical input atomic data sets. These two “photoionization codes” assume steady-state condi-

tions.

6For T . 104 K, hydrogen becomes neutral and the electron density depends on the assumed metallicity.

At these low temperatures the associated CIE metal ion fractions then do vary with Z.
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cooling occurs. Our results are also listed in “on-line” Tables 3 and 4. Results for other

metallicities are presented in additional electronic on-line figures and tables. In each panel in

Figure 2, the black curves are for isochoric cooling, and the light grey curves are for isobaric

cooling. Departures from CIE become apparent for T . 106 K, for which cooling becomes

rapid compared to recombination.

When departures from equilibrium occur, the gas at any temperature remains over-

ionized compared to CIE, as recombination lags behind cooling. The recombination lag

affects all elements including hydrogen and helium. For example, in CIE the hydrogen is

half-ionized at T = 1.6 × 104 K, and is fully neutral (99.9%) at 104 K. However, for non-

equilibrium (isochoric) cooling for Z = 1 the hydrogen is only 9% neutral at 104 K. The

metals are affected in a similar manner, with xi(T ) remaining overionized compared to CIE

at low temperatures. The recombination lags are largest for ions with small recombination

efficiencies. Thus, He-like ions, such as C4+, N5+, and O6+, which have long recombination

times, persist to much lower temperatures in radiatively cooling gas compared to CIE. For

example, for solar composition x(C4+) > 0.2 down to T ∼ 1.4 × 104 K for isochoric cooling,

and 2.3× 105 K for isobaric cooling, whereas in CIE xeq(C4+) becomes vanishingly small for

T below ∼ 8 × 104 K. Similarly, the non-equilibrium abundance of the widely observed ion

O5+ remains greater than 10% of its peak value of 0.11 occurring at 3.0 × 105 K, down to

temperatures of 2.0 × 104 K for isochoric cooling, and 1.0 × 105 K for isobaric cooling. In

CIE, O5+ vanishes below ∼ 2 × 105 K.

Figure 2 shows that at high temperatures, where CIE is attained, the isobaric and

isochoric xi(T ) curves converge as they must. However, for lower temperatures, the recombi-

nation lags are greater for isochoric cooling compared to isobaric cooling. This is due to the

shorter isochoric cooling times (see equation [8]). The isochoric and isobaric ion fractions

differ most substantially for ions with the largest recombination lags. The differences grow

with increasing metallicity as the cooling times become shorter.

Another important feature of the time-dependent ion distributions is the “double-

peaked” behavior of the xi(T ) curves seen for many ions, e.g. C++, C3+, Si3+, S4+, and S5+.

This behavior reflects the temperature dependence of dielectronic versus radiative recombi-

nation (Kafatos 1973). For such ions, dielectronic recombination is the dominant removal

mechanism from the high-temperature peaks to the central minima. At lower tempera-

tures dielectronic recombination weakens, and the ion fractions rise again due to continuing

recombination from the persisting higher ionization stages. As the temperature continues

to decrease, radiative recombination becomes increasingly effective and the ion fractions

drop again, leading to the low-temperature peaks. The double-peaked behavior is a time-

dependent effect, because the low-temperature peaks occur at temperatures for which the
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ions no longer exist in CIE.

Our non-equilibrium xi(T ) curves are in qualitative agreement with previous compu-

tations (Kafatos 1973, Shapiro & Moore 1976, Sutherland and Dopita 1993, Schmutzler &

Tscharnuter 1993). However, there are some significant differences in detail which are due, at

least in part, to differences in the assumed atomic processes and rate coefficients. For exam-

ple, the early studies by Kafatos (1973) and Shapiro & Moore (1976) did not include charge

transfer reactions with hydrogen or helium, which affect the ion fractions for T . 105 K.

Differences between our results and the more recent computations of Sutherland and Dopita

(1993) and Schmutzler & Tscharnuter (1993) are likely due to differences in dielectronic rate

coefficients (which control the “double-peak” behavior) and in the assumed solar abundances.

For example, Sutherland & Dopita adopted the Anders & Grevesse (1989) abundances with

O/H� = 8.5 × 10−4, whereas we adopt the more recent Asplund et al. (2005a) value of

4.6 × 10−4 (see Table 1). Different assumed abundances lead to altered cooling times and

departures from CIE.

Our results for the non-equilibrium ion fractions, xi(T ), for metallicities Z equal to 10−3,

10−2, 10−1, and 2, are presented in electronic “on-line” Figures 3-6, and Tables 5-12. Here

we consider two examples of how the assumed metallicity affects the ion fractions. In Figure

7 we display the O5+ and O++ distributions for the different values of Z in isochorically

cooling gas. At high temperatures (& 5×106 K) the cooling times are long for all Z, and the

O5+ and O++ abundances converge to the CIE distributions (thick grey curves). Departures

from CIE occur at lower temperatures. The departures are largest for large Z where the

cooling times are shortest. For example, for Z = 2 the O5+ distribution is very broad, and

this ion persists down to ∼ 104 K, remaining within a factor 3 of its peak abundance of 0.1

at T = 1.7× 104 K. For smaller Z the cooling times are longer, and the deviations from CIE

become smaller.

For very low metallicities (Z . 10−2), the metals contribute negligibly to the gas cooling

(see §5), and the cooling times are independent of Z (e.g. Boehringer & Hensler 1989). In

the “low-Z” limit, the ion-fraction curves therefore converge to specific “primordial” forms,

which may or may not approach the CIE distributions. This depends on whether the low-Z

cooling time is long or short compared to the ion recombination time. For example, Figure

7a shows that at low Z, the O5+ fractions approach CIE. However, Figure 7b shows that

O++ remains out of equilibrium in the low-Z limit. This is an example of an ion whose

abundance distribution can never reach equilibrium, for any Z, in radiatively cooling gas.

Such ions are generally those that appear at T . 2 × 105 K, where the low-Z cooling times

remain sufficiently short due to efficient cooling by hydrogen and helium Lyα emissions (see

§5).
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5. Cooling Efficiencies

We have carried out computations of the cooling efficiencies Λ(T, xi, Z) (erg cm3 s−1)

assuming CIE at all temperatures, and for time-dependent radiative cooling for isobaric and

isochoric evolutions. Our results are displayed in Figure 8, and listed in Tables 13-15. The

upper panel of Figure 8 shows our CIE cooling functions, Λeq, for T between 104 and 108 K,

and Z from 10−3 to 2. The lower panel displays the non-equilibrium cooling curves.

In computing the CIE cooling efficiencies we use the equilibrium ion fractions xeq
i (T )

computed in §4 as inputs to the cooling functions. Our CIE results reproduce the standard

“cosmic cooling curves” presented in many previous papers in the literature (see §1). Small

differences compared to previous calculations are expected due to updates in the input atomic

data and in the assumed gas phase abundances of the heavy elements.

For Z & 0.1, the radiative energy losses between 105 and ∼ 107 K are dominated by

electron impact excitations of resonance line transitions of metal ions. Above ∼ 107 K,

metal line cooling becomes less effective, and bremsstrahlung radiation dominates. The

low-temperature peak at 2 × 104 K is mainly due to hydrogen Lyα cooling, a process that

becomes less effective at higher temperatures where the neutral hydrogen fraction becomes

small. Recombinations and forbidden-line transitions are minor contributors to the gas

cooling. The familiar peaks and features in the cooling curves are due to specific metal line

coolants that dominate at different temperatures. The Lyα maximum is followed by peaks

at 1.0× 105, 3.0× 105, 5.0× 105, and 1.5× 106, due respectively to resonance line transitions

of carbon, oxygen, neon, and iron ions. For Z = 1 we find a maximum equilibrium cooling

efficiency of 4.6 × 10−22 erg cm3 s−1 at T = 2.3 × 105 K.

For Z . 0.01, metal cooling becomes negligible, and the energy losses are dominated by

hydrogen and helium only. H, He and He+ line emissions dominate at low T , and electron

bremsstrahlung due to scattering with H+ and He++ at high T . The cooling peak at 105 K

that appears when Z becomes small, is due to He+ Lyα.

Between 105 and 108 K, our Z = 1 cooling function is well fit by the power-law expression

(cf. Kahn et al. 1976),

ΛZ=1
eq = 2.3 × 10−19 T−0.54 erg cm3 s−1 . (14)

This approximation is accurate to within a factor of 2.4 over this temperature range (105 <

T < 108 K), and to within a factor of 1.7 for 105 < T < 6.3×107 K. For Z & 1, and between

105 and ∼ 107 K, Λ is linearly proportional to Z. For this range of parameters it follows

from equations (14) and (8) that the cooling time tc ' 0.22 T 1.54
6 /(n Z) Myr for isochoric

cooling, and a factor 1.6 times longer for isobaric cooling.
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For Z . 0.01, the cooling efficiency is independent of Z. In this low-Z limit, the two-

piece power law

ΛZ=10−3

eq =

{

1.7 × 10−16 T−1.29 , 8 × 104 < T < 8 × 105 K

3.8 × 10−26 T 0.34 , 8 × 105 < T < 108 K
(15)

(in units of erg cm3 s−1) reproduces the CIE cooling efficiency between 8 × 104 and 108 K

to within a factor of 1.35.

Figure 8b displays our results for the non-equilibrium cooling efficiencies. In these com-

putations we use the non-equilibrium ion fractions, xi(T ), obtained by solving the coupled

equations (1) and (5), as presented in §4, to compute Λ(T, xi, Z). For each Z we assume

sufficiently large initial temperatures such that ionization equilibrium is established before

significant cooling begins. Departures from equilibrium then occur as the temperature drops

and the cooling times become short. For each Z the filled circles in Figure 8b indicate the

points where the cooling curves begin to deviate by more than 5% from CIE cooling. This

is also where the isobaric and isochoric cooling curves (indicated for each Z by the labels

“IB” and “IC”) bifurcate. For Z = 1, departures from equilibrium set in for T . 106 K. The

deviations from CIE cooling begin at higher temperatures for higher Z, and lower temper-

atures for lower Z. For temperatures above the “departure points” the curves in the upper

and lower panels of Figure 8 are identical.

There are several important differences between the non-equilibrium and CIE cooling

curves. First, the distinct peaks and features that appear for CIE are smeared out in the

non-equilibrium cooling curves. This is due to the broader ion distributions, xi(T ), that

occur for non-equilibrium cooling. Individual ions then contribute to the cooling over a

larger temperature range. For example, for non-equilibrium cooling at high Z ions such as

O++ and Ne++ persist below 105 K, where they contribute significantly to the cooling in

addition to Lyα. The Lyα cooling peak is itself broadened because a high electron fraction

is maintained down to low temperatures.

Second, the non-equilibrium cooling efficiencies are suppressed, by factors of 2 to 4,

compared to CIE cooling. For example, for Z = 1 the maximum non-equilibrium cooling

efficiency, occurring at T = 2.1 × 105 K, is reduced to 2.6 × 10−22 erg cm3 s−1, a factor of

1.8 less than the maximal CIE efficiency. The suppression occurs because the gas remains

“over-ionized” as it cools, and the densities of the specific coolants that are most effective

at each temperature are reduced. The more highly ionized species that remain present at

each temperature generally have more energetic resonance line transitions, and these are less

efficiently excited by the thermal electrons (McCray 1987). For example, for non-equilibrium

cooling in the low-Z limit the absolute and relative heights of the hydrogen and helium Lyα

peaks are reduced compared to CIE cooling. This is because the H0 and He+ fractions remain
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smaller at any temperature compared to CIE.

Third, because isochoric cooling is faster (see equation [8]) with correspondingly greater

recombination lags, the suppressions in the cooling efficiencies are larger, and the isochoric

curves fall below the isobaric curves.

The differences we find between CIE and non-equilibrium cooling, are in good agreement

with the results found by Sutherland & Dopita (1993; see their Fig. 13) and Schmutzler &

Tscharnuter (1993; see their Fig. 2.2). For Z = 1 the power-law expression

ΛZ=1
non−eq = 5.6 × 10−20 T−0.46 erg cm3 s−1 (16)

provides a good fit to the non-equilibrium cooling efficiency between 105 and 108 K, and is

accurate to within a factor of 2.2. For 105 < T < 5.5 × 107 K, it is accurate to within a

factor of 1.5. For low-Z, departures from CIE cooling occur only below 2 × 105 K, so that

the fit given by equation (15) remains valid for radiatively cooling gas at low metallicity, for

T > 2 × 105 K.

The suppression of the cooling efficiencies compared to CIE implies longer cooling times.

The actual recombination lag is therefore smaller than would occur if the gas were able to

cool at the faster CIE rates. The departures from ionization equilibrium are thus stabilized

by the reduction in the cooling rates.

6. Diagnostics

For a uniformly cooling gas cloud, the line-of-sight column densities of ions i of element

m may be expressed simply as Nm
i = Amxi(T )NH, where NH is the column density of

hydrogen nuclei, Am is the abundance of element m (relative to H), and xi(T ) are the

temperature-dependent ion fractions, as computed in §4. Specific column density ratios

Nm
i

Nn
j

=
Am

An

xi(T )

xj(T )
(17)

may therefore be used as diagnostic probes of the ionization state, temperature, and also

metallicity in radiatively cooling gas. For CIE, the ion fractions are independent of the

metallicity Z, and the column density ratios depend only on the gas temperature (and

the relative elemental abundances Am/An). However, for non-equilibrium cooling the ion

fractions also depend on Z, and hence so do the column density ratios.

Diagnostic diagrams for radiatively cooling gas for different metallicities, may be con-

structed using the computational data we presented in §4 (Figs. 2-6 and Tables 2-12). As an
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example 7, in Figure 9 we display “cooling trajectories” for NC IV/NO VI versus NN V/NO VI,

for T ranging from 5 × 106 to 104 K. The gas temperature is represented by color along the

curves, from hot (red) to cool (blue). Panel (a) shows the behavior for CIE, for which the

results are independent of Z. Panels (b)-(f) are for non-equilibrium isochoric cooling, for Z

from 10−3 to 2. The CIE trajectory is reproduced as the grey curves in panels (b)-(f).

For the Z=1 model in Figure 9 we also display, as observational examples, the data

points and upper limits presented by Fox et al. (2005) for the multiphased high-velocity cloud

absorbers towards the background sources HE 0226-4110 and PG 0953+414 (black crosses).

The plot also includes the Galactic halo average (blue cross) NC IV/NO VI = 0.6 ± 0.47

and NN V/NO VI = 0.12 ± 0.07 (Zsargó et al. 2003, as quoted by Fox et al.). We also

show the regions demarcated by Fox et al. for the predictions for a variety of ionization

mechanisms, including turbulent mixing layers (TMLs; Slavin, Shull, & Begelman 1993),

conductive interfaces (CIs; Borkowski, Balbus, & Fristrom 1990), cooling flows (CFs; Edgar

& Chevalier 1986) and shock ionization (SI; Dopita & Sutherland 1996).

To set the absolute scale of our predicted ion columns, in Figure 10 we plot NC IV/NO VI

versus NO VI/NH,20 for each Z, where NH,20 is the hydrogen column density in units of

1020 cm−2. For the CIE calculation we assume Z = 1. At any temperature, the O VI column

scales linearly with the assumed NH, whereas the column density ratios are independent of

NH.

Of the three ions we are considering, O5+ is the most highly ionized, so that C IV/O VI

and N V/O VI are small at high temperature, and become large at low temperature. Figures

9 and 10 show again that for time-dependent radiative cooling the gas remains more highly

ionized compared to CIE. As Z becomes large and the recombination lags grow, the ion ratios

remain small even at low temperatures. The cooling trajectories are therefore confined to a

narrower range of ion ratios for non-equilibrium cooling. Furthermore, in our example, it is

evident that for a given N V/O VI ratio, the associated C IV/O VI ratio is larger for non-

equilibrium cooling compared to CIE. For example, a cloud for which NN V/NO VI ' 3 and

NC IV/NO VI ' 30 would be inconsistent with gas at CIE at any temperature, yet consistent

with isochoric radiatively cooling gas at a temperature near ∼ 1.3 × 105 K. It is clear

that assuming CIE when interpreting such data may lead to significant inaccuracies. For

example, for an isochorically cooling cloud with Z ' 1, absorption line measurements yielding

NC IV/NO VI ≈ 1 and NN V/NO VI ≈ 1 would be interpreted as indicating T ' 2 × 105 K

assuming CIE, whereas in fact these ratios occur at a much lower temperature ∼ 104 K.

7Diagnostic diagrams for any combination of ion-ratios may be constructed automatically using our web

tool at http://wise-obs.tau.ac.il/∼orlyg/cooling/.



– 20 –

Interestingly, many (but not all) of the Fox et al. (2005) data points lie close to our

Z = 1 cooling trajectory (see Figure 9e). At lower metallicities the column density ratios

approach the CIE trajectory which lies well below the data points. However, as indicated

by Figure 9e, even for Z = 1 further constraints may be required to distinguish radiatively

cooling gas from ionization occurring in conductive interfaces or turbulent mixing layers.

7. Summary

In this paper we present new computations of the equilibrium and non-equilibrium cool-

ing efficiencies and ionization states for low-density radiatively cooling gas, containing cosmic

abundances of the elements H, He, C, N, O, Ne, Mg, Si, S, and Fe. In these calculations we

assume pure radiative cooling, with no gas heating or photoionization by external sources.

We present results for gas temperatures, T , between 104 and 108 K. We assume that the

gas is dust free, and we consider metallicities Z ranging from 10−3 to 2 times the elemental

abundances in the Sun. We carry out our computations using up-to-date rate coefficients for

all of the atomic recombination and ionization processes, and the energy loss mechanisms.

For temperatures below ∼ 5×106 K, where ion-electron recombination lags significantly

behind the cooling, we explicitly solve the coupled time-dependent ionization and energy loss

equations for the cooling gas. For such gas we assume that the cooling is from an initially

hot equilibrium state. The basic equations and our numerical method are presented in §2.

We calculate the non-equilibrium cooling efficiencies for constant pressure (isobaric) and

constant density (isochoric) evolutions. Departures from collisional ionization equilibrium

(CIE) are slightly smaller for isobaric cooling.

In §3 we consider the conditions for isochoric versus isobaric cooling. We compute the

critical column densities and temperatures at which the cooling time becomes short compared

to the dynamical time, and the transition from isobaric to isochoric evolution occurs. These

results are displayed in Figure 1, and are based on the cooling efficiencies we present in §5.

Because we exclude photoionization by external radiation, both the equilibrium and

time-dependent behavior is independent of the assumed density or pressure. The primary

parameter for radiative cooling is the metallicity. Departures from equilibrium are largest

for high Z where the ratios of the cooling and recombinations times are smallest. At very

low metallicity (Z . 10−2) the cooling rates, and hence also the recombination lags, are

independent of the metallicity. In this limit any departures from CIE approach a universal

“primordial” form. The results of our equilibrium ionization calculations are displayed in

Figure 2 in §4. This figure also shows the ionization states for non-equilibrium isobaric and
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isochoric cooling, for Z = 1. Results for other metallicities are presented in on-line tables

and figures, as summarized in Table 16. Our computational data set can also be found at

our website http://wise-obs.tau.ac.il/∼orlyg/cooling/.

Figure 8 in §5 displays our results for the equilibrium and non-equilibrium cooling

efficiencies for Z between 10−3 and 2. We provide simple, or two-piece, power-law fits

(equations [14], [15], and [16]) for the equilibrium and non-equilibrium cooling efficiencies at

high and low Z. Non-equilibrium cooling is suppressed, by factors of 2 to 4, relative to CIE,

because of the generally higher ionization state of the rapidly cooling gas. The familiar peaks

in the CIE cooling curve are smeared out for non-equilibrium cooling, because individual

ions persist for a broader range of temperatures. Overall, our results are in good agreement

with previous such calculations. Detailed difference are mainly due to differences in the

input atomic data, and assumed abundances of the heavy elements. We make some explicit

comparisons with previous computations in §4 and §5.

Ion ratios are useful as diagnostic probes. In §6 we discuss one example, N V/O VI

versus C IV/OVI, and show how this ratio evolves in radiatively cooling gas, and how it can

be used as a probe of metallicity for realistic non-equilibrium conditions.

In our computations we assume that the cooling gas is optically thin. In the Ap-

pendix, we provide numerical estimates for the maximal cloud column densities for which

this assumption remains valid. We also investigate how reabsorption of hydrogen and he-

lium recombination radiation in optically thick clouds alters the cooling rates and associated

ionization states in non-equilibrium cooling gas. For high metallicity the effects of trapping

are small, but become more significant (∼ factors of 2) for low Z gas.

In a companion paper we will present computations of the metal ion “cooling columns”

produced in steady flows of radiative cooling gas, such as occur in post shock cooling layers,

including the effects of “upstream” cooling radiation on the “downstream” ionization states.

We will also consider how photoionization by external background radiation fields alters the

ionization and thermal evolution of radiatively cooling gas such as we have considered here.
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APPENDIX A. Reabsorption of Diffuse Radiation Fields

In the computations presented in §4 and §5 we have assumed that the cooling gas is

optically thin, and that reabsorption of line and continuum radiation emitted by the cooling

gas may be ignored. In this Appendix we provide numerical estimates for the maximal cloud

column densities for which the optically thin assumption is justified. We then examine how

trapping of hydrogen and helium recombination radiation in optically thick clouds affects

the time-dependent cooling efficiencies and ionization states.

For sufficiently large cloud column densities, absorption of the internally generated

“diffuse radiation” can alter the ionization state in such a way as to enhance or reduce the

net cooling rate. To estimate the critical column densities at which the cooling rates are

altered, we use Cloudy to compute the local CIE cooling rates as functions of the total

hydrogen column density, NH, for one-dimensional constant temperature slabs. We set the

external radiation field to zero, so that the radiative transfer handled by Cloudy is for the

internally generated diffuse fields only. For each temperature, T , and assumed metallicity

Z, we identify the critical column density, NHcrit(T, Z), at which the local cooling efficiency

at the cloud center first deviates by 50% from the optically thin cooling rate at the cloud

edge.

The critical column densities defined in this way are sensitive to the gas temperature

and associated ionization states. Here we are not interested in the detailed fluctuations of

NHcrit with gas temperature, but rather with the broad trends. In Figure 11, we display a

smoothed representation of NHcrit versus T . The solid curve, appearing for T . 6 × 104 K

is for the entire metallicity range 10−3 < Z < 2. For higher temperatures, the behavior is

sensitive to Z, and we display the critical columns by dashed lines for selected metallicity

ranges. For temperatures where no curves appear in Figure 11 the critical columns exceed

1024 cm−2.

Three distinct regimes appear in Figure 11. For 104 . T . 6 × 104 K, a transition

from “case A” to “case B” hydrogen recombination occurs as the cloud becomes optically

thick. Photoionization of hydrogen by H+ and He+ recombination radiation then alters the

dominating Lyα cooling rate. The Lyα cooling rate is proportional to the product xe(1−xe),

where xe is the electron fraction. For T . 1.5 × 104 K, the neutral fraction (1 − xe) ≈ 1,

whereas xe increases in the transition to case B. This leads to increased Lyα cooling. At these

low temperatures we find that NHcrit ∼ 1017 cm−2. At higher temperatures, T & 2.5×104 K,

the hydrogen is largely ionized and xe ≈ 1 so the transition to case B mainly reduces the

neutral fraction (1− xe). This leads to decreased Lyα cooling. For T = 2.5× 104 K, we find

NHcrit ≈ 5× 1019 cm−2. Between these two temperatures, xe(1− xe) remains approximately

constant in the transition to case B, and a local maximum of NHcrit = 4×1020 cm−2 appears
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at T ≈ 2 × 104 K. Above T ∼ 6 × 104 K NHcrit rises sharply because the hydrogen becomes

so highly ionized that Lyα cooling is no longer the dominant coolant.

Similarly, absorption of He++ recombination radiation by He+ ions alters the He+ Lyα

cooling rate at temperatures near 105 K where helium makes the transition from singly to

doubly ionized form. However, this effect is only important for low metallicity (Z < 10−2)

clouds, where He+ Lyα is a significant coolant. For such clouds, NHcrit = 1.5× 1022 cm−2 at

T = 1.6 × 105 K.

Finally, for 106 . T . 5 × 106 K, we find that NHcrit ∼ 1021 cm−2 in high metallicity

(Z & 1) clouds. At these temperatures, photoionization by numerous energetic metal

emission lines ionize O7+, and shift the peak of the iron ion distribution from Fe11+-Fe14+

to Fe13+-Fe16+. This reduces the cooling rate, because O7+, Fe11+, and Fe12+ are dominant

coolants at these temperatures. For lower Z, bremsstrahlung cooling plays a more dominant

role, and photoionization of the oxygen and iron ions is less important, so NHcrit is much

larger.

Our computations for NHcrit in Figure 11 are for CIE conditions. We now examine

how trapping of hydrogen and helium recombination radiation alters the cooling efficiencies

and non-equilibrium ionization states for time-dependent cooling. We consider a series of

isochoric model clouds with total column densities ranging up to NH = 1024 cm−2. We assume

that the H+, He+, and He++ recombination photons are reabsorbed on-the-spot when the

photoionization optical depths at the H0, He0 and He+ ionization thresholds exceed unity

respectively. The critical temperatures below which the clouds become optically thick are

higher for clouds with larger total column densities, since lower neutral hydrogen and helium

fractions are required. When the clouds become optically thick we switch from case A to case

B recombination in computing the evolution of the hydrogen and helium ionization states8.

In Figure 12 we plot the neutral hydrogen fractions, xH(T ), and cooling efficiencies,

Λ(T ), for case A and case B recombination. We display results for Z = 1 (left-hand panels),

and for Z = 10−3 (right-hand panels). To illustrate the effects on the metal ion distributions

we also plot the C+, C++, and C3+ fractions.

The neutral hydrogen fractions are, of course, reduced in optically thick clouds. The

vertical lines connecting the case A and case B curves indicate the temperatures at which, for

a given total cloud column NH, the cloud becomes optically thick to hydrogen recombination

8For He+ recombination radiation, we assume that an appropriate fraction y of photons emitted in

recombinations to the He ground state are absorbed by neutral H, and a fraction (1 − y) are absorbed by

neutral He. We adopt the low-density limit p = 0.96 for the fraction of helium recombinations to excited

states that are absorbed on-the-spot by neutral H (see Osterbrock 1989).
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radiation. For example, for NH = 1021 cm−2, this occurs at T = 5 × 104 K.

For Z = 1 the differences between case A and case B cooling are small, and are only

apparent at low temperatures where Lyα cooling dominates. For non-equilibrium cooling

the electron fraction remains large down to 104 K. Therefore, down to this temperature

Lyα cooling is reduced by the reduction in the neutral H fraction. (This is opposed to the

situation in CIE where, as discussed above, for 104 K gas the Lyα cooling is enhanced by an

increased electron density in optically thick clouds.) For Z = 1, the slightly altered cooling

efficiencies in optically thick clouds lead to only very small changes in the non-equilibrium

metal ion abundances, as is illustrated for the carbon ions in Figure 12. Our conclusions for

Z = 1 are consistent with the results of Kafatos (1973) and Shapiro & Moore (1976), who

considered the transition from optically thin to thick (for hydrogen recombination radiation

only) at a single temperature T = 3.5 × 104 K (corresponding to NH ≈ 1.3 × 1020 cm−2).

For Z = 10−3, hydrogen and helium are already the dominant emission line coolants

below ∼ 106 K, and the transition to optically thick conditions has a larger effect. The

cooling efficiencies are reduced by up to a factor ∼ 2. In Figure 12 we draw three cooling

curves for Z = 10−3. The upper curve is for optically thin case A cooling. The middle curve

(labeled “He+ case B”) is for clouds that are still optically thin to H+ and He+ recombination

radiation, but are thick to He++ recombination photons. The lower curve is for case B clouds

that are thick to the H+ and He+ recombination photons as well. The vertical lines connecting

the curves indicate the transition temperatures for different cloud columns NH. For example,

a 1021 cm−2 cloud shifts from case A to “He+ case B” at ∼ 2 × 105 K, and then becomes

thick to H+ and He+ recombination radiation (“H/He case B”) at ∼ 5 × 104 K.

For low-Z gas the overall cooling rates are small, and hence so are the departures from

CIE. Therefore, even though the cooling efficiencies are significantly altered by trapping of

the recombination radiation, the resulting effect on the ion fractions is not very large. As

shown for C+, C++, and C3+ the effects are most significant at low temperatures where the

departures from CIE are largest.
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Table 1. Solar Elemental Abundances

Element Abundance

(X/H)�

Carbon 2.45 × 10−4

Nitrogen 6.03 × 10−5

Oxygen 4.57 × 10−4

Neon 1.95 × 10−4

Magnesium 3.39 × 10−5

Silicon 3.24 × 10−5

Sulfur 1.38 × 10−5

Iron 2.82 × 10−5

Table 2. CIE Ion Fractions

Temperature H0/H H+/H He0/He . . .

(K)

1.00 × 104 9.99 × 10−1 9.30 × 10−4 1.00 × 100 . . .

1.05 × 104 9.97 × 10−1 2.88 × 10−3 1.00 × 100 . . .

1.10 × 104 9.93 × 10−1 6.98 × 10−3 1.00 × 100 . . .

1.15 × 104 9.84 × 10−1 1.51 × 10−2 1.00 × 100 . . .

1.20 × 104 9.69 × 10−1 3.05 × 10−2 1.00 × 100 . . .

Note. — (1) The complete version of this table is in the

electronic edition of the Journal. The printed edition contains

only a sample. (2) CIE ion fractions are given for Z = 1. For

T . 104 K the electron density, and associated ion fractions,

depend on Z.
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Table 13. CIE Cooling Efficiencies

Temperature Λ(Z = 10−3) Λ(Z = 10−2) Λ(Z = 10−1) Λ(Z = 1) Λ(Z = 2)

(K) (erg cm3 s−1) (erg cm3 s−1) (erg cm3 s−1) (erg cm3 s−1) (erg cm3 s−1)

1.00 × 104 4.70 × 10−24 4.98 × 10−24 7.78 × 10−24 5.59 × 10−23 3.77 × 10−22

1.05 × 104 7.62 × 10−24 7.79 × 10−24 9.55 × 10−24 3.09 × 10−23 6.96 × 10−23

1.10 × 104 1.23 × 10−23 1.25 × 10−23 1.39 × 10−23 2.86 × 10−23 4.76 × 10−23

1.15 × 104 1.97 × 10−23 1.98 × 10−23 2.11 × 10−23 3.41 × 10−23 4.93 × 10−23

1.20 × 104 3.08 × 10−23 3.09 × 10−23 3.22 × 10−23 4.51 × 10−23 5.98 × 10−23

Note. — The complete version of this table is in the electronic edition of the Journal. The

printed edition contains only a sample.

Table 16. Ionization and Cooling Data

Data Table Figure

Ion Fractions:

CIE 2 2

Z = 1, Isochoric 3 2

Z = 1, Isobaric 4 2

Z = 10−3, Isochoric 5 3

Z = 10−3, Isobaric 6 3

Z = 10−2, Isochoric 7 4

Z = 10−2, Isobaric 8 4

Z = 10−1, Isochoric 9 5

Z = 10−1, Isobaric 10 5

Z = 2, Isochoric 11 6

Z = 2, Isobaric 12 6

Cooling Efficiencies:

CIE 13 8

Isochoric 14 8

Isobaric 15 8
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Fig. 1.— Critical column densities, Dtrn, and temperatures, Ttr, for the transition from

isobaric to isochoric cooling, for clouds with metallicities Z ranging from 10−3 to 2 times solar.

(a) Transition column, Dtrn, versus transition temperature, Ttr, as given by equation (12).

The dotted line is the power-law approximation for Z = 1. In the region above the curves

the cooling is isochoric. Below the curves the cooling is isobaric. The arrows indicate

the direction in which the gas evolves as it cools. (b) Transition temperature, Ttr, from

isobaric to isochoric cooling, versus the initial state parameter x0 ≡ D0P0/T
1/3

0 , as given by

equation (13). The dotted line is the power-law approximation for Z = 1.



– 33 –

10
−2

10
−1

10
0 0 +

H
yd

ro
g

en
   

x  i   
(Z

=1
)

0

+

Isochoric

Isobaric

10
−2

10
−1

10
0 0 + 2+

H
el

iu
m

   
x  i   

(Z
=1

)

2+

0

+

2+

10
−2

10
−1

10
0

0

+ 2+

3+

4+

5+

8+

C
ar

b
o

n
   

x  i   
(Z

=1
)

6+

0

+

2+

3+

4+

5+

6+

10
4

10
5

10
6

10
−2

10
−1

10
0 0 +

2+ 3+

4+

5+

6+

7+

N
it

ro
g

en
   

x  i   
(Z

=1
)

T (K)

7+

10
4

10
5

10
6

0

+

2+

3+

4+

5+

6+

7+

T (K)

Fig. 2.— Ion fractions xi ≡ ni,m/nHAm, versus gas temperature. Each row displays results

for a different element. Left hand panels are for collisional ionization equilibrium (CIE).

Right hand panels are for non-equilibrium isochoric and isobaric cooling for Z = 1 times

solar metallicity gas. Dark curves are for isochoric cooling. Light curves are for isobaric

cooling. Panels show H, He, C, and N.
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Fig. 2.— Continued. Panels show O, Ne, and Mg.
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Fig. 3.— Same as Figure 2, but for Z = 10−3 times solar metallicity. Left hand panels are

for CIE. Right hand panels are for non-equilibrium isochoric and isobaric cooling. Panels

show H, He, C, and N.
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Fig. 3.— Continued. Panels show O, Ne, and Mg.
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Fig. 3.— Continued. Panels show CIE ion fractions for Si, S, and Fe.
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Fig. 3.— Continued. Panels show non-equilibrium ion fractions for Si, S, and Fe.
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Fig. 4.— Same as Figure 2, but for Z = 10−2 times solar metallicity. Left hand panels are

for CIE. Right hand panels are for non-equilibrium isochoric and isobaric cooling. Panels
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Fig. 4.— Continued. Panels show O, Ne, and Mg.
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Fig. 4.— Continued. Panels show CIE ion fractions for Si, S, and Fe.
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Fig. 4.— Continued. Panels show non-equilibrium ion fractions for Si, S, and Fe.
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Fig. 5.— Same as Figure 2, but for Z = 10−1 times solar metallicity. Left hand panels are

for CIE. Right hand panels are for non-equilibrium isochoric and isobaric cooling. Panels

show H, He, C, and N.
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Fig. 5.— Continued. Panels show O, Ne, and Mg.
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Fig. 5.— Continued. Panels show CIE ion fractions for Si, S, and Fe.
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Fig. 5.— Continued. Panels show non-equilibrium ion fractions for Si, S, and Fe.
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Fig. 6.— Same as Figure 2, but for Z = 2 times solar metallicity. Left hand panels are for

CIE. Right hand panels are for non-equilibrium isochoric and isobaric cooling. Panels show

H, He, C, and N.
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Fig. 6.— Continued. Panels show O, Ne, and Mg.
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Fig. 6.— Continued. Panels show CIE ion fractions for Si, S, and Fe.
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Fig. 6.— Continued. Panels show non-equilibrium ion fractions for Si, S, and Fe.
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Fig. 9.— Column density ratios NC IV/NO VI versus NN V/NO VI for radiatively cooling

gas. Gas temperature is indicated by color along the trajectories, from hot (red) to cool

(blue). Temperature versus color legend is on the right. (a) displays the CIE trajectory,

shown again as grey curves in the other panels. (b)-(f) are the trajectories non-equilibrium

isochoric cooling for different values of the metallicity Z. The data points (Fox et al. 2005)

show the ionic ratios observed in metal absorbers toward HE 0226-4110 and PG 0953+414

(black), and in the Galactic halo (blue). The boxes show model prediction, as demarcated

by Fox et al., for turbulent mixing layers (TMLs), conductive interfaces (CIs), cooling flows

(CFs) and shock ionization (SI).
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where NH,20 is the hydrogen column density in units of 1020 cm−2.
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Fig. 11.— NHcrit versus temperature. NHcrit is the column density at which the cooling
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10−3 < Z < 2. The dashed curves are for the displayed Z range. For temperatures where

no curve is displayed, NHcrit > 1024 cm−2.
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versus temperature for optically thin “case A”, and optically thick “case B” (see text). The
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row displays the optically thin and thick cooling efficiencies. For Z = 10−3 the intermediate
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Lower row displays the C+, C++, and C3+ ion fractions for optically thin and thick clouds.


