What Could AGN Feedback Do for Galaxy Formation

Avishai Dekel

HU Jerusalem

Hagai60, February 2006

Outline

- Galaxy bimodality: shutdown in big galaxies
- Shock heating vs cold flows: threshold mass
- AGN vs supernova feedback: maintenance
- Origin of the bimodality

Bi-modality in color and bulge/disk

Bell

Bi-modality: Age vs Stellar Mass

SDSS Kauffmann et al. 03

gas fraction: Sheila Kannappan

Transition Scale

Surface Brightness

Bulge/Disk

SDSS Kauffmann et al. 03

Color-Magnitude bimodality & B/D depend on environment ~ halo mass

SDSS: Hogg et al. 03

Mass versus Light Distribution

<M/L> vs M for halos in 2dF assuming ACDM

Using conditional luminosity function: Van den Bosch, Mo, Yang 03

Observed Characteristic Scale

• bi-modality/transition at $M_* \sim 3 \times 10^{10} M_{\odot} \sim L_* \qquad M_{halo} \sim 6 \times 10^{11} M_{\odot}$

below: disks, blue, star forming, in field (small halos)

above: spheroids, red, old stars, clustered (massive halos)

• very blue gal's \rightarrow regulated starbursts

• big blue galaxies at very early times $z\sim2-3$ \rightarrow early star formation in big objects

• luminous red galaxies at early times $z\sim0-1$ \rightarrow early star formation, then **Shutdown**

Bi-modality in color and bulge/disk

Bell

2. Shock-Heating vs Cold Flows: Threshold Mass

Birnboim & Dekel 2003; Dekel & Birnboim 2006

QT Luong / terragalleria.com

Standard Picture of Infall to a Disk Rees & Ostriker 77, Silk 77, White & Rees 78, ...

Perturbed expansion Halo virialization

Gas infall, shock heating at the virial radius

Radiative cooling Accretion to disc if t_{cool}<t_{ff} Stars & feedback

 $M < M_{cool} \sim 10^{12-13} M_{\odot}$

Cooling rate

Cooling vs Free Fall

Rees & Ostriker 77, Silk 77, White & Rees 78 Blumenthal, Faber, Primack & Rees 86

Hydro Simulation: ~Massive $M=3\times10^{11}_{\log(T[K])}$

Less Massive M=1.8×10¹⁰

Shock Stability (Birnboim & Dekel 03): post-shock pressure vs. gravitational collapse

adiabatic:

with cooling rate q (internal energy e):

$$\gamma_{eff} \equiv \frac{d(\ln P)}{d(\ln \rho)} = \gamma - \frac{\rho q}{\dot{\rho} e} = \frac{5}{3} - \frac{5}{21} \frac{t_{comp}}{t_{cool}}$$
$$\dot{e} = -P\dot{V} - q$$

$$t_{comp} \equiv \frac{21}{5} \frac{\rho}{\dot{\rho}} \approx \frac{4}{3} \frac{R_s}{V} \qquad t_{cool} \equiv \frac{e}{q} \propto \frac{T}{\rho \Lambda(T,Z)} \qquad T \approx \frac{3}{16} V^2 \quad \rho_{post} \approx 4\rho_{pre}$$

Stability criterion:

$$\gamma_{eff} > \frac{10}{7}$$

$$t_{cool}^{-1} < t_{compress}^{-1}$$

Shock-Heating Scale

Fraction of cold/hot accretion

SPH simulation

Keres, Katz, Weinberg, Dav'e 2004

Z=0, underestimating M_{shock}

sharp transition

Cold Flows in Typical Halos

Cold Streams in a Hot Medium

 $\log(T[K])$

M>M_{shock} Cold streams at z>2 Totally hot at z<1

Cold, dense filaments and clumps (50%) riding on dark-matter filaments and sub-halos

Birnboim, Zinger, Dekel, Kravtsov

Fraction of cold/hot accretion

cold streams in hot media at high z

SPH simulation Keres, Katz, Weinberg, Dav'e 2004

Shock-Heating vs Clustering Scale

Once the halo gas is shock heated, what keeps it hot?

3. Feedback Processes and the shock-heating scale

Supernova feedback AGN feedback

Below the Shock-Heating Mass

Supernova Feedback

Chandra X-Ray Observatory image of M82

Mori et al

Supernova Feedback Scale

(Dekel & Silk 86, Dekel & Woo 03)

Energy fed to the ISM during the "adiabatic" phase:

$$E_{\rm SN} \approx v \varepsilon \dot{M}_* t_{\rm rad} \propto M_* (t_{\rm rad}/t_{\rm ff})$$

$$\dot{M}_* \approx M_*/t_{\rm ff} \qquad \approx 0.01$$
for $\Lambda \propto T^{-1}$ at $T \sim 10^5 K$

Energy required for blowout:

$$E_{\rm SN} \approx M_{\rm gas} V^2$$

$$\rightarrow V_{\rm crit} \approx 120 \ {\rm km/s} \rightarrow M_{\rm crit} \approx 7 \times 10^{11} M_{\odot}$$

SN feedback only in small galaxies

Above the Shock-Heating Mass

Emission Properties vs. Stellar Mass

low-mass emission galaxies are almost all star formers

high-mass emission galaxies are almost all AGN

Kauffmann et al. 2004

AGN Feedback: how does it work?

How is the energy emitted from the "microscopic" black hole transferred to the gas on galactic scales?

Shock Heating Triggers AGN Feedback

M>M_{shock}

More than enough energy is available in AGNs

Hot gas is vulnerable to AGN feedback, while cold streams are shielded

→ Shock heating is the trigger for AGN feedback in massive halos

Introduces the necessary threshold mass

Dilute gas is heated and pushed away while dense clumps are shielded

Minimum Feedback Efficiency at Critical Mass

<M/L> has a minimum at M_{crit}

Using conditional luminosity function: Van den Bosch, Mo, Yang 03

4. Origin of the Bi-modality Dekel & Birnboim 06

Key Ideas:

Cold flows → star burst supersonic streams collide near center -efficient cooling behind isothermal shock → dense, cold slab → star burst

Hot medium \rightarrow halt star formation dilute medium vulnerable to AGN fdbk

- \rightarrow shock-heated gas never cools
- \rightarrow shut down disk and star formation

From blue sequence to red sequence

In a standard Semi Analytic Model (GalICS)

Cattaneo, Dekel, Devriendt, Guiderdoni, Blaizot 05

too few galaxies at z~3

star formation at low z

With Shutdown Above $10^{12} M_{\odot}$

Standard

2

z

4

6

-2.0

-2.5

0

With Shutdown Above $10^{12} M_{\odot}$

Environment dependence via halo mass

Bulge to disk ratio

Scales Roughly Coincide

Conclusions

- Dark-halo mass drives galaxy type: $M_{crit} \sim 10^{12} M_{\odot}$: shock heating, feedback, clustering
- Disk buildup & star formation: ...by cold flows riding dark-matter filaments
- Early (z>2) in big halos M>10¹²:
 big blue galaxies by cold flows in hot media
- Late (z<2) in big halos M>10¹² (groups): virial shock heating triggers AGN feedback
 → shutdown of star formation → red sequence
- Late (z<2) in small halos M<10¹² (field): blue disks $M_*<3\times10^{10}M_{\odot}$
- Explains other open puzzles

Questions for AGN Feedback

- Energy of outflow (vs binding energy of galactic gas)?
- Persistence over Hubble time?
- Mechanism for spreading the effect across the galaxy?
- origin of threshold mass?

Thank you

AAT 60

