Spitzer spectroscopy of AGN

Dieter Lutz

MPE

Mario Schweitzer, Eckhard Sturm, Hagai Netzer, Sylvain Veilleux, QUEST team...

Tel Aviv, February 20, 2006

A new quality of mid-infrared spectroscopy

Opening the era of high-z infrared spectroscopy

The first surprise: silicate emission in quasars

Suggested modifications to explain absence of silicate emission in type 1 AGN:

- changes of grain size distribution (Laor & Draine 1993, Maiolino et al. 2001)
- Special geometries, e.g. tapered disks (Efstathiou & Rowan-Robinson 1995)
- Clumpy tori (Nenkova et al. 2002)

Opt. thin dust, different size distributions (Laor & Draine 93)

Type 1 SED for different radial distributions of clumps (Nenkova et al. 02)

... observed also at lower luminosity

- Sizeable population of Type 1 AGN with silicate emission
- Incidence as a function of luminosity and other factors still under investigation
- Demonstrates presence of a significant component of optically thin silicate dust
- **Cold** Temperatures ~140K-220K (from feature ratio and ISM silicate emissivity profile). Too cold for inner side of torus near sublimation but ok for dust further out, e.g. in the NLR?

Silicate emission in Type 2 objects!

$1-100\mu m$ QSO SEDs

Average QSO SED: three mid-infrared bumps

Conditions in the silicate emitting region

The most simple cartoon...

Dust outside sublimation Radius: > $\sim 0.5 L_{46}^{0.5} pc$

Dust outside sublimation Radius: > $\sim 0.5 L_{46}^{0.5} pc$

Similar Galactic SEDs: flared, passive irradiated protostellar disks

The origin of QSO far-infrared emission

Rowan-Robinson (1995) pure AGN SED – strong far-infrared then must be star formation

Sanders et al. 1989: warped disk could provide enough cold but AGN-heated dust

Ho 2005: [OII] 3727 study - SF inhibited by QSO? QSOs with strong/weak PAH and [NeII]

Average spectra: PAH is widespread

Star formation tracers and far-infrared emission

Starburst-AGN connection

- Silicate emission widespread in Type 1 AGN, and also detected in some Type 2 objects – not a straightforward unification effect...
- 3µm and silicate bumps in SED: matter near sublimation radius, and at few 100pc – detailed geometry?
- Far-infrared emission in QSOs arises mostly from star formation
- Star formation activity and AGN luminosity correlate up to high luminosity

If Tel Aviv gets too hot...

