

X-Ray Properties of LINERs, a biased review...

by Mike Eracleous

The Main Questions

- What powers the emission lines?
- Do LINERs harbor weak AGNs?

These are two distinct questions!

If an AGN is present, it need not be the power source of the emission lines.

In the beginning (life before Chandra)...

- LINERs observed by the *Einstein* observatory.
 - General properties summarized by Halpern & Steiner (1983) $L_x (0.5-4.5 \text{ keV}) \sim 10^{39} 10^{41} \text{ erg/s}$
- Morphology and soft X-ray spectra studied with *ROSAT* (5"/25" beam) (Fabbiano et al.; Komossa et al.; Halderson et al.)
 - Wide variety of morphologies (central point sources with and without diffuse emission)
 - Spectra sometimes power laws and sometimes thermal.
- Spectroscopy with ASCA (3'-4' beam)
 (Ptak et al.; Terashima et al.; plus others)
 - Composite spectra (with a universal shape): hard power law (Γ~1.7) + soft thermal plasma (kT~0.6 keV) consistent with morphological information from *ROSAT*

The Importance of Chandra

- High spatial resolution
 - Low background
 - High sensitivity
 - Good astrometry
 - Ability to resolve crowded fields
- Broad energy response
 - Study morphology vs energy; separate thermal emission from discrete sources
 - Broad-band spectroscopy; identify source types by their spectra

Nemen et al. 2006, in press

Flohic et al. 2006, submitted

Selection of Chandra LINER Samples

- Snapshot Surveys (2-5 ks):
 - Ho et al. (2001); Sipior (2003) → Palomar spectr. sample
 - Terashima & Wilson (2002) → compact radio cores
 - Dudik et al. (2005) → IR-bright LINERs (from IRAS)
- ◆ Case Studies (>20 ks) → selected bright objects Eracleous et al.; Pelegrini et al.; Trinchieri & Goudfroij; Lira et al.; Fabbiano et al.; Nemen et al.

* "Archival" Surveys:

- Filho et al. (2004) → radio composites (core+diffuse)
- Satyapal et al. (2004,2004) → more IR bright LINERs
- Flohic et al. (2006) → 19 long Chandra exposures
- Gonzalez-Martin et al. (in prep) → everything (broad scope)

Archival Survey of 19 LINERS (Flohic et al.)

- ♦ $t_{exp} > 15 \text{ ks, D} < 25 \text{ Mpc, } L_{min} \sim 10^{36} \cdot 10^{37} \text{ erg/s}$
- ♦ Representative mix of LINER types (L1.9, L2, T2).
- Concentrate on inner kiloparsec.
- Look for AGNs, study point source populations, and properties of diffuse gas.
- Consider all available multi-wavelength data
 - Careful astrometry
 - Radio, UV, emission-line images
 - Properties of stellar population from spectroscopy
- Careful spectral fitting whenever possible.
- Examine energy budget.

Summary of AGN Properties

- LL AGNs found in > 60% of cases (up to 74%?)
- ◆ $L_x \sim 10^{37} 10^{40}$ erg/s; L/L_{Edd} ~ $10^{-8} 10^{-5}$
- All LINERs with a compact radio core harbor a hard nuclear X-ray source (LL AGN).
- But only 50% of hard nuclear X-ray sources in LINERs are associated with compact radio cores.
- In some rare cases the AGN is highly obscured, but typically N_H ~ 10²¹ cm⁻²
- Eddington ratios span a wide range of values

X-Ray Radio Loudness (Terashima & Wilson 2002)

$$R_{\rm x} \equiv \frac{\nu L_{\nu}(5 \text{ GHz})}{L_{\rm x}(2\text{-}10 \text{ keV})} > -4.5$$

- All LINERs with a compact radio core harbor a LL AGN.
- But only 50% of LL AGNs in LINERs have compact radio cores
- Sometimes the AGN is highly obscured

L_x-L_H Correlation (Ho et al.; Terashima et al.)

Distribution of AGN Properties (from Flohic et al.)

L_X - $L_{H\alpha}$ Correlation at Low L_X (Flohic et al. 2006)

FIR vs X-Ray properties (Satyapal et al 2004,2005)

Environs (Flohic et al. 2006)

Soria et al. 2006, in press

FIR vs X-Ray properties (Satyapal et al 2004,2005)

L/LEdd VS LFIR and LFIR/LB (IRAS + Chandra)

Balancing the budget...

- Assume power-law SED from 1 Ry to > 100 keV
 - Energy balance $\rightarrow L_{H\alpha} < 0.2 L_{2-10 \text{ keV}}$
 - Photon counting \rightarrow L_{H α} < 0.02 *f* L_{2-10 keV}

Oooops!

- Something wrong with assumed SED?
- Is the L_x $L_{H\alpha}$ correlation right?

Balancing the budget: other power sources?

Photoionization by stars: young stars? very rare! post-AGB stars? quite likely!

Binette, Stasinska, & Bruzual 1994, A&A, 292, 13 Mechanical interaction of AGN with ambient gas via jet or wind

$$P_{jet} \sim 10^3 L_{bol}$$

Nagar, Falcke, & Wilson 2005, A&A, 435, 521

The End