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SUPERNOVAREMNANTS AS
CIRCUMSTELLAR MEDIUM PROBES

➢ The dynamical and spectral properties of young supernova remnants
are determined by the nature of the supernova explosion and the structure
of the circumstellar medium.

➢ Core-collapse SNe: the progenitors are known (in some cases, even
identified: SN 1987A, SN 1993J, SN 2003gd, SN 2004A?). CSM is shaped
by massive star outflows [Marston, García-Segura, Dwarkadas]. Binary
interactions can introduce a lot of complexity [Podsiadlowski].

➢ Thermonuclear SNe: the progenitors are not known. What shapes the
CSM?
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The nature of the WD companion is uncertain:

➢ A normal star: Single Degenerate (SD) systems. [Preferred by theorists].
➢ Another WD: Double Degenerate (DD) systems. [Explosion is uncertain –
BUT 'Champagne Supernova' [Howell et al. 06, Nat 443, 308]].

SD systems

Artist's
(mis)conception

Real thing: Chandra image
of Mira (ο Ceti)
Karovska et al. 05, ApJ
623, L137

DD systems

Guerrero et al. 04, A&A 413, 257

Type Ia SNe are the result of the thermonuclear explosion of a C+O
White Dwarf that is destabilized by accretion in a close binary system
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➢ Single degenerate binary systems are the
preferred candidates for Type Ia SN progenitors
[Branch et al. 95, PASP 107, 1019].

➢ Their viability has not been proved!

➢ MWD~ 0.6 M⊙ and always < 1.2 M⊙⇒ Need to
accrete at least 0.2 M

⊙
to reach 1.38 M .⊙

➢ H-rich matter from the companion must burn
to C and O QUIETLY⇒ dM/dt has to be fine-
tuned.

Homeier et al. 98, A&A 338, 563

Nova
Explosions

RG

Mass accretion
through RLOF

Townsley& Bildsten 05
ApJ 628, 395

MS or RG
donor
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➢Accretion Winds
➢(Hachisu et al. 96, ApJ 470, L97)

➢The luminosity from the WD surface drives a fast, optically thick
outflow that gets rid of the excess material.

Hachisu et al. 99,
ApJ 522, 487

➢ Essential for the evolution of Type Ia
progenitors in the SD channel (only way to
avoid a common envelope phase).

➢ The details of the binary evolution can
be quite complex. [Langer et al. 00, A&A 362,
1046; Han & Podsiadlowski 04, MNRAS 350, 1301].

➢ RXJ0513.9-6951 and V Sge are
systems with active accretion winds
[Hachisu & Kato 03, ApJ 590, 445; ApJ 598, 527].

➢ Some authors claim that a H-accreting
WD cannot grow to 1.38 M

⊙
[Cassisi et al.

98, ApJ 496, 376].
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➢ Part of the material accreted from the
companion is not burnt at the WD surface
⇒ fast accretion wind outflow. Typical
scales:

➢ dM/dtof ~ 10-7 to 10-6M⊙yr-1.
➢ tof~ 106 yr.
➢ uof ~ 103 km s-1.

➢ How does this modify the CSM?

Han & Podsiadlowski 04 MNRAS 350, 1301

Hachisu et al. 99,
ApJ 522, 487

OUTFLOW
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➢ Outflows into the ISM⇔ wind cavities.

➢ Properties of the cavity determined by outflow
velocity uof ⇔ critical limit ucr [Koo & McKee 92, ApJ
388, 93]:

uof>ucr⇒ fast
Radiative losses do not
affect the shocked
outflow. Cavity is
energy-driven.

uof<ucr⇒ slow
Radiative losses affect
the shocked outflow.
Cavity is
momentum-driven.
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➢ When these fast, continuous outflows expand into the warm phase of the ISM,
they excavate large (~1020 cm) interstellar bubbles around the SN Ia progenitors.

➢ Variations in ρISM and pISM do not affect the bubbles significantly.

CSM
configuration
at the time of
the SN
explosion:

Note that most
bubbles are
pressure-
confined!
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➢ Forward shock radii and velocities. Historical Type Ia SNRs (SN 1885, Kepler,
Tycho, SN 1006) + LMC Type Ia SNRs with good age estimates [Rest et al. 05, Nat.
438, 1132] (0509-67.5, 0519-69.0, N103B) + other (suspect) objects: RCW 86, DEM
L71, G337.2-0.7, 0548-70.4.

➢ Models: PDDe+accretion wind bubble; PDDe+RG wind, EXP+ISM (Ek=0.8 .. 1.4
foe; ρISM=5x10-25 .. 5x10-24 g cm-3).

⇒ Most objects are compatible with a uniform ISM (exception: RCW 86)
⇒ CSM structures from low Lw outflows cannot be discarded easily.
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emission in the SNR
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➢ A similar comparison can be done based on the spectral properties of the X-ray
emission from the shocked SN ejecta.

➢ In SNR models evolving inside large cavities, the SN ejecta expand to very low
densities before any significant interaction can take place ⇒ low values for the
ionization timescales of Si and Fe in the shocked ejecta:

Cavities Cavities

Uniform
ISM

Uniform
ISM

⇒ Spectral SNR properties constrain the CSM structure independently of
the dynamics.
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➢ Optical: dense knots (N enriched),
radiative shocks. ~500 pc above the
Galactic plane, high systemic velocity
(>200 km.s-1) ⇒ Massive runaway
progenitor interacting with a bow shock
CSM [Bandiera 87, ApJ 319, 885].

➢ X-rays: lots of Fe in the ejecta, but no
detectable O. No compact object (>10-2
LCas A). Balmer shocks (require partially
neutral CSM) ⇒ Thermonuclear SN.

750 ks Chandra exposure [Reynolds et al.
07, ApJ submitted]

➢ Is it possible to ignite a thermonuclear runaway in the degenerate C+O core
of a massive star? ⇒ Type I.5 SN [Iben & Renzini 83 ARA&A 21, 271] (many problems)
➢ More complex multiple-star progenitor?
➢ Is this the nearest example of the 'prompt' channel to Type Ia SNe?
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➢ The dynamics and spectral properties of young SNRs can provide
insights into the pre-SN outflows of the progenitors.

➢ Reliable age estimates are needed (more light echoes, please!).

➢ The imprint of CSM structures associated with low mechanical luminosity
outflows might be hard (or impossible) to find.

➢ In the known Type Ia SNRs with good age estimates, there is no trace of
the fast WD winds commonly associated with SD progenitors [Badenes et al. 07,
ApJ 662, 472]. Type Ia progenitor models are in serious trouble for several
other reasons [Maoz 07, arXiv/0707.4598].

➢ The Kepler SNR is an interesting case. Fe-rich, O-poor ejecta point almost
certainly at a thermonuclear explosion, but clear signs of a CSM interaction
are also present [Reynolds et al. 07, ApJ submitted].


