מציאת אפ0ים (Root finding)

float rtbis(float (*func)(float), float x1, float x2, float xacc)
Using bisection, find the root of a function func known to lie between x 1 and $\mathbf{x 2}$. The root, returned as rtbis, will be refined until its accuracy is $\pm x a c c$.

$$
\operatorname{xacc}=10^{-6} \frac{\left|x_{1}\right|+\left|x_{2}\right|}{2}
$$

ניוטון-רפסון כשעובד, עם חצייה ליתר בטחון:
float rtsafe(void (*funcd)(float, float *, float *), float x1, float x2, float xacc) Using a combination of Newton-Raphson and bisection, find the root of a function bracketed between $x 1$ and $x 2$. The root, returned as the function value rtsafe, will be refined until its accuracy is known within $\pm x a c c$. funcd is a user-supplied routine that returns both the function value and the first derivative of the function.

```
void funcd(float x, float *f, float *df)
{
}
```

```
    *f = X*'x;
```

 f = X'x;
 *df = 2*x;
    ```
    *df = 2*x;
```

דוגמא להחזרת פונקציה :df והנגזרת שלה f

מציאת אפ0ים : 0יכום

הבעיה: לפתור f(x)=0.

$$
\begin{aligned}
\boldsymbol{\varepsilon}_{\mathbf{n}+1} & =\frac{1}{2} \boldsymbol{\varepsilon}_{\mathbf{n}} \\
x_{n+1} & =x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} \\
\epsilon_{n+1} & =\frac{1}{2} \epsilon_{n}^{2} \frac{f^{\prime \prime}(x)}{f^{\prime}(x)}
\end{aligned}
$$

שיטה 1: שיטת החצייה.
התכנסות ליניארית:

שיטה 2: שיטת ניוטון-רפון:

שיטת חיתוך הזהב (Golden Section Search)

float golden(float ax, float bx, float cx, float (*f)(float), float tol, float *xmin) Given a function f , and given a bracketing triplet of abscissas $\mathrm{ax}, \mathrm{bx}, \mathrm{cx}$ (such that bx is between $a x$ and $c x$, and $f(b x)$ is less than both $f(a x)$ and $f(c x)$), this routine performs a golden section search for the minimum, isolating it to a fractional precision of about tol. The abscissa of the minimum is returned as xmin, and the minimum function value is returned as golden, the returned function value.

שיטת ברנט (Brent)

פרבולה דרך 3 נקודות, לפי נוסחת לגרנג':

$$
\begin{aligned}
P(x)=\frac{(x-b)(x-c)}{(a-b)(a-c)} f(a) & +\frac{(x-a)(x-c)}{(b-a)(b-c)} f(b) \\
& +\frac{(x-a)(x-b)}{(c-a)(c-b)} f(c)
\end{aligned}
$$

$$
\begin{gathered}
\frac{d P(x)}{d x}=0 \quad \text { המינימום של הפרבולה: } \\
x=b-\frac{1}{2} \frac{(b-a)^{2}[f(b)-f(c)]-(b-c)^{2}[f(b)-f(a)]}{(b-a)[f(b)-f(c)]-(b-c)[f(b)-f(a)]} \quad
\end{gathered}
$$

ברנט כשעובד, עם חיתוך זהב ליתר בטחון:

float brent(float ax, float bx, float cx, float (*f)(float), float tol, float *xmin)
Given a function f , and given a bracketing triplet of abscissas ax, bx, cx (such that bx is between $a x$ and $c x$, and $f(b x)$ is less than both $f(a x)$ and $f(c x)$), this routine isolates the minimum to a fractional precision of about tol using Brent's method. The abscissa of the minimum is returned as xmin, and the minimum function value is returned as brent, the returned function value.

