
In the notes, we skipped from the bottom of pg. 25 (“Special case”) to the middle of 
pg. 27 (“Moments of CBE”). This material is not needed.

The part from pg. 29 middle (“Comoving coordinates”) to pg. 31 middle 
(“Comments”) is repeated in the “Comoving Addition”, with the addition of other 
homogeneous components (in addition to matter). The added section also includes 
the full derivation of the Euler equation, which is optional (we will skip it).
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4.4 Eulerian fluid equations in comoving coordinates

We develop here a quasi-Newtonian derivation of perturbation theory. The ultimate
justification of the resulting equations, though, requires a full treatment of linear
perturbation theory within general relativity.

4.4.1 Coordinate transformation

In order to describe the cosmic evolution of non-relativistic matter, but must first
consider a general background expansion. In analogy with the case of spherical
collapse (though, again, the full justification comes from GR), this requires adding
to dq⃗/dt the term

−
4

3
mπG(ρ+ 3p)rest r⃗ , (4.42)

where from now we use r⃗ for the (physical) position. We emphasize that the dis-
tribution function and quantities derived from it refer only to matter, and do not
include other components (which are assumed to be spatially uniform); as a re-
minder of this, we will write ρm instead ρ. The next step is to transform the fluid
equations (continuity, Euler, plus Poisson), which we have derived in a Newtonian
(fixed) coordinate frame, to comoving coordinates:

x⃗ = r⃗/a , dτ = dt/a , (4.43)

with a corresponding velocity in these coordinates:

v⃗ ≡
dx⃗

dτ
= a

dx⃗

dt
=

dr⃗

dt
−Hr⃗ = u⃗−Hr⃗ , (4.44)

which shows that v⃗ is precisely the peculiar velocity.
The transformation to comoving coordinates also involves gravity. Instead of

the density, we focus on the density pertubation relative to the cosmic mean den-
sity, ∆ρm = ρm − ρ̄m, or its dimensionless form δ. Similarly, we define a peculiar
gravitational potential φpec so that φpec = 0 for a homogeneous universe. Indeed, in
a uniform universe there is spherical symmetry, so assuming φ = φ(r), the Poisson
equation (with respect to the proper coordinate r⃗) is, in spherical coordinates,

∇2
rφ =

1

r2
d

dr

(

r2
dφ

dr

)

= 4πGρ̄m ,

where ρ̄m may depend on time. The solution (assuming φ = 0 at the origin r = 0)
is φ = 2πGρ̄mr2/3. Thus, in general φpec is defined relative to the mean Universe
by

φpec = φ−
2π

3
Gρ̄mr

2 . (4.45)

We note that mathematically speaking, the force due to the other components in
Eq. (4.42) is equivalent to adding to φ a term

2π

3
G(ρ+ 3p)rest r

2 ,



April 20, 2017 21:40 ws-book961x669 Galaxy Formation and Evolution ws-book961x669 page 46

46 Galaxy Formation and Evolution

since ∇⃗r2 = 2r⃗. Thus, the term of Eq. (4.42) does not change any moment equation
of the CBE that does not involve φ, and it changes the Euler equation by adding,
on the right-hand side, the term

−
4

3
πG(ρ+ 3p)rest r⃗ , (4.46)

When we transform from coordinates (r⃗, t) to (x⃗, τ), we need to also transform
the partial derivatives in the fluid equations. Fixed t is the same as fixed τ , so for
any function s,

∂s

∂x⃗

∣

∣

∣

∣

τ

= a
∂s

∂r⃗

∣

∣

∣

∣

t

. (4.47)

A derivative at fixed x⃗ is more subtle, however. In general,

ds =
∂s

∂r⃗

∣

∣

∣

∣

t

· dr⃗ +
∂s

∂t

∣

∣

∣

∣

r⃗

dt .

Since r⃗ = ax⃗, at fixed x⃗ we have dr⃗ = x⃗da. Also, in general, da/dτ = ada/dt = a2H.
Thus diving df by dτ at fixed x⃗ yields

∂s

∂τ

∣

∣

∣

∣

x⃗

= aHr⃗ ·
∂s

∂r⃗

∣

∣

∣

∣

t

+ a
∂s

∂t

∣

∣

∣

∣

r⃗

. (4.48)

We can also use this in reverse form, as

∂s

∂t

∣

∣

∣

∣

r⃗

=
1

a

∂s

∂τ

∣

∣

∣

∣

x⃗

−Hx⃗ ·
∂s

∂x⃗

∣

∣

∣

∣

τ

. (4.49)

In what follows, we use short-hand notation

∇⃗r ≡
∂

∂r⃗

∣

∣

∣

∣

t

, ∇⃗x ≡
∂

∂x⃗

∣

∣

∣

∣

τ

.

Also, by ∂/∂t we mean at constant r⃗, while ∂/∂τ implies at constant x⃗.

4.4.2 Poisson equation

Since the Poisson equation is linear in φ,

∇2
x φpec = a2∇2

r φpec = a2∇2
r

(

φ−
2π

3
Gρ̄mr

2

)

= a2 (4πGρm − 4πGρ̄m) .

Thus, the final result is

∇2
x φ = 4πGa2ρ̄mδ , (4.50)

where here and for the rest of this section, we drop the subscript, and use φ to
denote the peculiar Newtonian potential φpec.
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4.4.3 Continuity equation

The continuity equation in the notation of this section is

∂ρm
∂t

∣

∣

∣

∣

r⃗

+ ∇⃗r · (ρmu⃗) = 0 .

The first term is
∂ρm
∂t

∣

∣

∣

∣

r⃗

=
∂

∂t

∣

∣

∣

∣

r⃗

[ρ̄m(1 + δ)] =
dρ̄m
dt

(1 + δ) + ρ̄m

[

1

a

∂δ

∂τ

∣

∣

∣

∣

x⃗

−Hx⃗ ·
∂δ

∂x⃗

∣

∣

∣

∣

τ

]

,

where we used Eq. (4.49). The second term in the continuity equation is

1

a
∇⃗x · [ρ̄m(1 + δ)(v⃗ + aHx⃗)] =

1

a
ρ̄m∇⃗x · [(1 + δ)v⃗]+ ρ̄mH

[

x⃗ · ∇⃗x δ + (1 + δ)∇⃗x · x⃗
]

.

We now note that dρ̄m/dt = −3ρ̄mH (since ρ̄m ∝ a−3), and ∇⃗x⃗ · x⃗ = 3. Combining
all terms, and dividing by a factor of ρ̄m/a, yields:

∂δ

∂τ
+ ∇⃗x · [(1 + δ)v⃗] = 0 . (4.51)

4.4.4 Euler equation

The Euler equation can be transformed similarly to the continuity equation. Our
starting point is the desired left-hand side, which is the comoving version of the
total derivative following a trajectory:

d

dτ
=

∂

∂τ
+ v⃗ · ∇⃗x ,

applied to the comoving velocity v⃗. We apply to it Eq. (4.44), Eq. (4.47), and
Eq. (4.48) to obtain

∂v⃗

∂τ
+
(

v⃗ · ∇⃗x

)

v⃗ = aHr⃗ ·∇⃗r (u⃗−Hr⃗)+a
∂

∂t
(u⃗−Hr⃗)+a

[

(u⃗−Hr⃗) · ∇⃗r

]

(u⃗−Hr⃗) .

On the right-hand side, the first term cancels with the second part of the third
term, leaving

a
∂u

∂t
− ar⃗

dH

dt
+ a

(

u⃗ · ∇⃗r

)

(u⃗−Hr⃗) .

The last term we split, and then note that
(

u⃗ · ∇⃗r

)

r⃗ = u⃗. We now note that two

of the terms we have here equal a times the left-hand side of the Euler equation
in proper coordinates, so we use that equation, with the addition of the term of
Eq. (4.46). For simplicity, we assume no anisotropic stress (

↔
π = 0). Using also

Eq. (4.45), we obtain
[

−
a

ρm
∇⃗r p− a∇⃗r

(

φ+
2π

3
Gρ̄mr

2

)

−
4

3
πGa(ρ+ 3p)rest r⃗

]

− ar⃗
dH

dt
− aHu⃗ ,

where again we denote φpec simply by φ. Now we re-write the r⃗ gradients as x⃗
gradients using Eq. (4.47), and the remaining u⃗ back in terms of v⃗ using Eq. (4.44).
We obtain

−ar⃗

{

dH

dt
+H2 +

4π

3
G [ρ̄m + (ρ+ 3p)rest]

}

− aHv⃗ −
1

ρm
∇⃗x p− ∇⃗x φ .
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Now we use the cosmic acceleration equation for the mean universe to see that

dH

dt
+H2 =

d

dt

(

da/dt

a

)

+
(da/dt)2

a2
=

1

a

d2a

dt2
= −

4πG

3
[ρ̄m + (ρ+ 3p)rest] .

Finally, noting that H = (da/dτ)/a2, the Euler equation in comoving coordinates
is

∂v⃗

∂τ
+ (v⃗ · ∇⃗x)v⃗ = −

1

a

da

dτ
v⃗ −

1

ρm
∇⃗x p− ∇⃗x φ . (4.52)

Again, the left-hand side is simply the total derivative following a trajectory, while
on the right-hand side, the first term accounts for the redshifting of peculiar velocity
(v ∝ 1/a), the second for the pressure gradient force (when gas pressure is present),
and the third for gravity.


