
Computers for Physicists 2nd Semester ’04

�� ��Subject #15: Pointers

• The following program is similar to our first program in C (without the input part), but it uses a
function to swap numbers:

main()
{

int i,j ;
void swap(int *pi, int *pj) ;

i = 5 ;
j = 17 ;
printf("At the beginning, i = %d and j = %d\n", i, j) ;

swap(&i, &j) ;
printf("At the end, i = %d and j = %d\n", i, j) ;

}

void swap(int *pi, int *pj)
{

int temp ;

temp = *pi ;
*pi = *pj ;
*pj = temp ;

}

• &i is a pointer to the int variable i. It holds the memory address at which that variable is stored.
Because C function calls pass parameters by value, in order for a function to access and change a
variable in the function that called it, we must give it pointers as parameters. This is exactly what
is done when we read input with the scanf function.

• The unary operator & is called the address operator.

• We can also define variables which are pointers to any legal type themselves. The declaration for a
pointer to an int, for example, looks like

int *pi ;

The declarations of the parameters of the function swap are exactly of this type.

• If pi is a pointer to an int, then *pi is the integer it points to. The unary operator * is called the
indirection operator.

• Make sure now that you understand the above program!

44



Computers for Physicists 2nd Semester ’04

• Generally in C, the syntax of declarations and the syntax of use both agree. The declaration for a
pointer to int is int *pi because *pi is an int. The declaration of an int array is, say, int arr[10]
because arr[0] is an int.

• One should use pointers with care, since an inappropriate use of a pointer might result in the
program crashing or exhibiting an erratic behavior.

• Structures, as any other kind of variable, may be passed as arguments to functions. However,
because they contain a lot of information it is usually better to pass a pointer to the structure,
instead of passing the structure itself. Here is an example:

void summarize_student(struct student *s)
{

s->final_grade = (s->exam_grade + s->project_grade)/2;
printf("Name: %s, ID: %d, Grade: %d\n",

s->name, s->id, s->final_grade);
}

The function call would look like this:

struct student st;

.

.

.

summarize_student(&st);

• The expression:

s->name

has the same meaning as:

(*s).name

'

&

$

%

Classwork: Minimum and maximum of an array

• Write a function void minmax(int a[], int n, int *min, int *max) that finds the
minimum and maximum of the elements in the array a[], which contains n elements.
The function should return the results through min and max.

• Write a short program to test the function.

45



Computers for Physicists 2nd Semester ’04

�� ��Subject #16: More on Pointers

• Pointers and arrays are very close in C. In fact, the name of an array is a pointer. Therefore,
&arr[0] is identical with arr. An array points to a constant address which cannot be changed.
The memory for all the array elements is allocated at compilation time.

• Using address arithmetic, we can use a pointer to a certain place in an array to get a pointer to
another place in it. For example, to get the fifth element in the array arr, we can write *(arr+4)
just as we can write arr[4].

• The valid pointer operations are

– assignment of pointers of the same type.

– assigning zero (or the symbolic constant NULL, defined in <stdio.h>) to a pointer. This is
done for marking only — the address 0 doesn’t point anywhere.

– adding an integer to or subtracting an integer from a pointer (yielding a pointer).

– subtracting two pointers to members of the same array (resulting in an integer).

– comparing such two pointers with the relational operators.

– comparing a pointer to zero.

• We shall give now an example of a function computing the length of a string (not including the
’\0’, which marks the end of the string), using simple address arithmetic.

/* strlen: return length of string s */
int strlen(char *s)
{

int n ;

for (n = 0; *s != ’\0’ ; s++)
n++ ;

return n ;
}

• Since s is a pointer, incrementing it is perfectly legal; s++ has no effect on the character string in
the function that called strlen, but merely increments strlen’s private copy of the pointer. That
means that calls like

strlen("hello\n") ; /* string constant */
strlen(array) ; /* char array[40] ; */
strlen(ptr) ; /* char *ptr ; */

all work.

46



Computers for Physicists 2nd Semester ’04

• This is another possible version of the strlen function:

/* strlen: return length of string s */
int strlen(char *s)
{

char *t ;

for (t = s; *t != ’\0’ ; t++) ;
return t-s ;

}

47


