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Chapter 1

Echelle spectrograph theory

1.1 Properties of échelle gratings

1.1.1 Grating equation

A schematic of a diffraction grating is shown in Figure 1.1. A reflective surface (having
a normal N) has been ruled with grooves which have spacing 0. These grooves cause the
light incident at an angle o to be diffracted through an angle 5. According to Huygen’s
principle each groove facet, which has a width o;, acts as a source for (plane) diffracted
wavefronts. A given wavelength A will interfere constructively only if the following con-
dition applies:

mA=o(sina+sinf) . (1.1)
This is the classical form of the diffraction grating equation which assumes that the
incident and diffracted rays are all perpendicular to the grooves. It is also possible to
illuminate the grating at angle v with respect to the facet normal (in the z-z plane, see
Figure 1.2) in which case the grating equation becomes

mA = o(sina +sin f) cosy . (1.2)

Figure 1.1: Schematic diagram of a
(reflection) diffraction grating.

1.1.2 Blazed gratings

The grating can be made to diffract a high proportion of the energy into a single diffraction
direction by orientating the grating facets such that a chosen wavelength (in a given
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Figure 1.2: Schematic diagram of a

‘ ‘ grating where v # 0.
o Og

diffraction order) is incident and diffracted at very nearly the same angle. This effect is
termed blazing, and is achieved by orientating the grating facets so that the diffraction
angle is very nearly same as the angle of specular reflection. As shown in Figure 1.3a, the
grating facet angle with respect to the grating normal is called the blaze angle 5. An
échelle grating is simply a standard blazed grating which has a large blaze angle. Such
gratings are often referred to in terms of an “R-number” which is the tangent of the blaze
angle. For instance an R2 grating has a blaze angle g = 63.4° while an R4 grating has a
blaze angle fg = 76.0°. From Figure 1.3a it can be seen that the angles of incidence and
dispersion « and 3 are related to the blaze angle fg of the grating by:

a = fOg+6 and

where 6 is the facet illumination angle with respect to the facet normal. That is § is the
angle of diffraction for a wavelength A (the blaze wavelength) in the centre of order m.
Echelle gratings can also be illuminated out of the normal plane (see Figure 1.3b) and it
follows that the blaze wavelength Ag is defined in terms of the grating equation (equation
1.2) as

mAp = o(sina+ sin j3) cosvy

= 20sinfgcosfcosy . (1.4)

For reasons of efficiency the only viable modes in which an échelle grating can be operated
are where o > 3 or that o =~ B (see Schroeder and Hilliard, 1980 and Section 1.1.11).
The situation where § = 0 (i.e., o = B) is termed the Littrow condition and if v # 0
the condition becomes quasi-Littrow. Under Littrow illumination, the optical step of a
grating oy is given by

oy =osinflg (1.5)

and the facet width is
os =0ocosbg . (1.6)
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This determines the order of interference for diffracted light. That is,

m= 2 (1.7)

(a) Profile of échelle grating.

(b) Isometric view of échelle grating.

Figure 1.3: Schematic diagram of an échelle grating. The definitions of the blaze angle 65, angle of
incidence a and the angle of diffraction # are shown in (a). The angle 3 is the angle of diffraction in
the centre of each order m. The facet illumination angle 6 is defined with respect to the facet normal
O-z. All these angles are defined in the y-z plane. The definition of v is shown in (b). It is the angle of
incidence with respect to the facet normal as measured in the z-z plane.
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1.1.3 Angular and linear dispersion

The angular dispersion of a grating is found by differentiating equation 1.2 with respect
to A for a given . This gives

% - m (1.8)
d\  ocosfcosy '
or
% _ sina+sinf (1.9)
dy Acos 8 ’ '
which in the centre of an order, at the blaze wavelength, becomes
@_QSinHBcosﬁ (1.10)

dA\  )Agcosp

From these equations it can be seen that for a given wavelength high angular dispersion
can be obtained either by making « (and () large or by increasing the grating groove
density (i.e., small o). Echelle gratings make use of this fact by having large blaze angles
and by being coarsely ruled. Typical échelle gratings have from 30 to 300 grooves mm 1)
and they therefore operate with large values of m (i.e., m = 10 to > 100).

The angular dispersion is independent of the optical system of which the grating is
part. The linear dispersion is determines the extent 0/ of a spectral region 0\ on a given
detector and is given by

dg
ol = f camaé)‘ s
where f..m is the focal length of the camera used to image the spectrum. The plate factor
P is the reciprocal linear dispersion and is therefore

p= (fcamdﬁ)_l | (1.12)

(1.11)

dx

1.1.4 Free spectral range

The free spectral range Alpsg is defined as the change in wavelength from an order m
to the next (m 4+ 1). Any wavelength that appears in an order m will also appear in
orders m — 1 and m + 1; however the angle of diffraction will be quite different as will the
diffracted intensity. The free spectral range is given by

A)\FSR - %, (113)

which in terms of the blaze wavelength, Ag, becomes

A2 cosy
A\ - _ "B
FSR 20 sin 6y cos 6
]
2t

%

(1.14)
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The angular extent of one free spectral range is determined by multiplying the free spectral
range (equation 1.13) with the angular dispersion (equation 1.8). That is,

d
Afrsr = gA)\FSR

A
= 3 (1.15)
o cos B cos y

which, if § = 0, becomes AfBrsg = Ap/(0scosvy). This is simply diffraction from a
rectangular slit of width 0. The diffraction pattern has an angular width \/os. From
the above equations it can be seen that for a given diffraction angle S and order number
m both the angular extent of an échelle spectrum depends largely on the density of the
échelle rulings. A coarsely ruled grating (large o) will produce a spectrum with a smaller
angular extent (per free spectral range) than a more finely ruled grating.

1.1.5 Anamorphic magnification

If a source is of angular distance da as viewed from the grating then after dispersion it
will have an angular separation 63, where

_ 5,38
0 =dag . (1.16)

Now, from equation 1.1, it is straight-forward to show that

ds
da

_ cos«
~ cosfB

(1.17)

The quantity r = cosa/cosf is called the anamorphic magnification. The effect of
anamorphic magnification on the dispersed light from an échelle grating is illustrated in
Figure 1.4. It can be shown that a beam with a diameter B which is incident on a grating
at angle o will after diffraction through an angle 8 have a diameter B’ given by

B == . 1.18

: (1.18)
It should be noted that the anamorphic magnification can vary considerably across a
single free spectra range. This is particularly significant for high R-number gratings,
which generally have a larger angular free spectral range.

- B Figure 1.4: The effect of

//,/ anamorphic magnification on
- y beam size.
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Figure 1.5: Schematic diagram of a slit limited a spectrograph (after Schroeder, 2000).
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Figure 1.6: Schematic diagram of a fibre-fed spectrograph. The cone of light which exits the fibre is
slightly larger than would be expected in the absence of a fibre (dashed line).

1.1.6 Direct and fibre spectrographs

A schematic slit-limited spectrograph is shown in Figure 1.5. A telescope of diameter D
and focal length fi. feeds a spectrograph which has an entrance slit width w. The fibre-
fed spectrograph (Figure 1.6) is identical to the directly fed spectrograph except that a
fibre of diameter d replaces the slit. In both cases the angle subtended by the slit or fibre
on the sky is

w

s = — or

° ftel
d

0, = — . 1.19
ftel ( )

If the spectrograph is directly coupled to the telescope (for instance, in coudé,
Cassegrain or Nasmyth configurations) then the following equality will apply:

f tel f col

— = 1.20

_D B 3 ( )
where f., is the focal length of the collimator. If instead the spectrograph is coupled to
a telescope via an optical fibre then after the light has passed through the fibre it will
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emerge with an output focal ratio F,,; which is faster than the input focal ratio Fj,, where

F, = % and  F,u = % (1.21)

This effect is known as focal ratio degradation (FRD, see for example Angel, 1977 or
Ramsey, 1988) can be described in terms of a FRD parameter p:

Fout
= . 1.22
P=T (1.22)

Although FRD always has the effect of decreasing the focal ratio, the amount by which
it is decreased depends upon the focal ratio at which the fibre is fed. A typical fibre fed
at an optimal focal ratio will decrease the focal ratio by about 10% to 20% (i.e., p = 1.1
to 1.2). Now, because of FRD, the equality given in equation 1.20 becomes for fibre-fed
instruments

@ _ fcol

D "B
That is, in order for the beam size to remain constant on the same spectrograph which
is first directly fed and then later fibre-fed, the focal length of the collimator must be
reduced. In order to preserve throughput, the effective resolving power will thereby be
reduced (see Section 1.1.10) which justifies this effect being termed a degradation. The
use of fibres for spectroscopy will also be briefly discussed in Section 1.2.4.

(1.23)

1.1.7 Slit width and height

As viewed from the grating, the angular size of the slit is da = w/ feo1 Or ¢ = d/ feor- 1t
was shown above that this slit will undergo anamorphic magnification and therefore the
image of this slit will have a width w’ given by

I f cam

w = w
fcol

_ gqlem
= dfCOIT : (1.24)

r or

The slit height A’ will be
fcam
K = A2 or
fcol

dfcﬂr' : (1.25)
fcol

where ' is the anamorphic magnification introduced by the cross-disperser. This is gen-
erally (but not always) negligible.
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1.1.8 Line tilt

Although the quasi-Littrow mode of grating illumination offers advantages in terms of
efficiency, a non-zero v has the effect of tilting the slit image with respect to the direction
of dispersion. Due to the finite height of the slit, there is a small change in the angle
of incidence with respect to the facet normal (in the z-z plane) from the bottom of the
slit to the top. As shown in Figure 1.7, if the change in 7 is ¢-y, then there will be a
corresponding change in the angle of diffraction, 63, which will result in a line tilt ¢ given

by
0 d
tan ¢ = op = db ,
oy dy
where it should be noted that §/3/d+ is not necessarily a constant, and hence the tilt angle
¢ will vary across the slit image height. This line curvature will only be noticeable for

very long slit heights. It follows that

(1.26)

45 _ d3 )

= —— 1.2
dy d) dy 7’ (1.27)

where df/d) is the échelle angular dispersion (equation 1.8 or 1.9) and from the grating
equation

% = —%(sina+sinﬁ) siny . (1.28)
Therefore
sina +sin B sinvy
tang =
cos 3 COS 7y
d
= )\g tanvy (1.29)

which at the blaze wavelength Ag the line tilt becomes
tan¢ = 2tanfgtany . (1.30)

Note that from equation 1.30 it can be seen that high R-number gratings are more sus-
ceptible to line tilt. It is also significant to note that if some of the cross-dispersive power
occurs before the échelle grating then the line tilt will have a wavelength dependence.

f

cam

AL B

Figure 1.7: Schematic of a tilted slit image.
This is due to the finite height of the slit which
slightly changes ~.
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Fibre tilt

The effect of line tilt on a fibre requires more detailed consideration. As before, a non-zero
~ will tilt the dispersed fibre image by an amount ¢ given by equation 1.29. This tilt will
however simply shear the fibre in the direction of échelle dispersion (see Figure 1.8). A
detailed schematic of this sheared fibre is shown in Figure 1.9. The unsheared image of
the fibre is an ellipse (due to anamorphic magnification of the circular fibre) which has a
height A and width w. This ellipse has an equation

472 4y? 2 9 5o WhH?
The ellipse is then sheared through an angle ¢ giving
! r+ytang and
y =y, (1.32)
which if substituted into equation 1.31 gives
12 1! 2 w? 12 w?
' —2tan¢ 'y’ + | tan ¢+ﬁ Yy —Zzo : (1.33)

Equation 1.33 can be recognized as a quadratic equation of the form

Az? + B2y +C'y*+F' =0 (1.34)
where the coefficients are
A =1 |
B'" = —2tan¢ ,
C' = tan’¢+ w and
h2
2
F = —wz . (1.35)
Because the discriminant B> — 4A4'C" = —4':—; < 0 this sheared ellipse is also an ellipse.

However, the major axis of this ellipse does not form an angle ¢ to the major axis of the
unsheared ellipse. In fact, it can be shown that the sheared ellipse is equivalent to an
ellipse of the form

A"x"2 + C”y”2 + F"=0 , (1.36)

which has been rotated through an angle ¢, given by

A -
cot2¢, = o
1 ) w?
- b
2tanq§<tan Ot T >
1 w?
= ——cot¢p—cot2¢ . (1.37)

2 h?
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The coefficients of the unrotated ellipse are

A" = A'cos® o + B' cos pe sin ¢, + C' sin? e
C" = A'sin? ¢ — B'sin ¢, cos ¢e + C’ cos? ¢,

FII — FI

Now, if equation 1.36 is rewritten in the form

x//Z y//2 _
@ T T

b

and

we find that the major and minor axis lengths a and b are given by

_F" _F"
2 2
a® = YU and b° = o

The full width w, of the sheared ellipse is given by

w
7(3 :xe+yetan¢ )

and can be derived by noting that at (z,y) = (e, Ye)

%z—cotqﬁ

Given that in polar coordinates
w h
T = 5COS€ and y= §sin0
it is straightforward to show that
We = W SEC P

where

h
tan ¢ = tan (— tan qﬁ)
w

(1.38)

(1.39)

(1.40)

(1.41)

(1.42)

(1.43)

(1.44)

(1.45)

The relevance of the above derivation will become apparent when the resolving power of
fibre-fed échelle spectrographs is considered below (Section 1.1.10).
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Tilt

O/ Jweye)
S/ (XeYe
.9
' X
){ )
B . -

11

Figure 1.8: A fibre image sheared by line
tilt.

Figure 1.9: Schematic of a
tilted fibre.  The fibre im-
age has been sheared by line
tilt through an angle ¢. The
sheared image is an ellipse with
axes which have been rotated
through an angle ¢.. See text
for details.
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1.1.9 Cross dispersion

Because échelle gratings generally work at relatively high order numbers (i.e, m > 1)
there are many combinations of m and A that satisfy the grating equation. Therefore, an
échelle grating will usually be used in conjunction with a second dispersive element which
will disperse the spectra in a direction that is orthogonal to the main échelle dispersion.
This element could be either a grating or a prism (or a combination of the two; for
instance, a grism). This is shown schematically in Figure 1.10. It would also be possible
to separate the orders by using a filter which is tuned to allow transmittance of only one
free spectral range centred on the wavelength of interest. However, this would negate one
of the most attractive features of an échelle spectrograph. That is, if the order separation
is done by an element with low dispersive power it is possible to arrange many orders
into a 2-dimensional format which can be simultaneously imaged by a single camera. The
choice of cross-dispersers will be discussed further in Section 1.2.2.

Order separation

If the spectrograph camera has a focal length f.,, then the separation between orders
will be
ds

aXD

where df/dAxp is the angular dispersion of the cross-disperser. If we express the free
spectral range in terms of the blaze wavelength Ag then equation 1.46 becomes

Ay = fcam A/\FSR s (146)

48 A2

A = cam ;. -~ - A A
y=1 dAxp 20 sin 05 cos 8

(1.47)

Ay

)\XD

Figure 1.10: Schematic of échelle
cross-dispersion.

-
X

}\ ECH

Order tilt and curvature

As shown in Figure 1.10 the orders will be tilted by an amount 1. The angle % is given
by
_ dB/dXxp

tany = ——+ |
v dB/dAecn

(1.48)
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where dB/dAgch is the angular dispersion of the échelle grating and dB/dAxp is the
angular cross dispersion. In the order centre the tilt is

dg Acos 3
t =— - 1.49
an g dAxp 2 sin 0 cos 0 ( )

However, because the échelle angular dispersion is not completely uniform throughout an
individual order (i.e, equations 1.8 and 1.9) the orders will be slightly curved.
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1.1.10 Resolving power

If a spectrograph has marginally sufficient resolution to distinguish between two wave-
lengths A\; and Ay = A\; + 6\ then the resolving power is defined as

R=— 1.50

(SA’ ( )
where A & A\; & Ay. The angular width between the two wavelengths A; and A in the
dispersed beam will be §3, so in terms of the angular dispersion (d3/d)), equation 1.50
may be written as

A dg
R=—— 1.51
03 dA (151)
Now, from equation 1.16 the above becomes
A da
= —— 1.52
dardA (1.52)
The resolving power may now be written in a more useful form by noting that
da sina+sing
—_— = 1.53
dA A cos a ’ (1.53)
which gives
R isinoﬁ—sinﬁ
dox cosa
1 2
- tan O . (1.54)

S (1 — tan O tan 6)

The term cosy is ignored here as v is always small and therefore cosy ~ 1.

Diffraction limit

The diffraction limited resolving power can be derived from equation 1.54 by noting that,

L
mA\ = N(sin a+sinf) (1.55)

where N is the number of grooves across a grating which has a length L. If the collimated
beam size is B, then it follows that B = L cosa and that the diffraction limited angular
slit size 0 is approximately A/B (or, equivalently 6 =~ A/D). Therefore, in the diffraction
limit,

R=mN . (1.56)

Directly fed spectrographs

In the case of a directly fed spectrograph equation 1.54 becomes

_ fcol 2tan eB

R w (1 — tanfgtanf)

(1.57)



1.1. Properties of échelle gratings 15

Combining equations 1.57, 1.19 and 1.20 gives

2B tan 6y

R=
0sD(1 — tan 0y tan 6)

(1.58)

This provides a very useful way of determining the resolving power of a spectrograph
in terms of the diameter and focal length of the telescope, the slit width (expressed in
terms of the angle the slit subtends on the sky), and the size of the collimated beam
which is incident on the spectrograph’s grating. If the collimated beam can be matched
to the projected length of the échelle grating (i.e., B = Lcosa) then equation 1.58 can
be rewritten as 91 sinLfn cos
in O

R= 6.0 . (1.59)
This equation was first given by Bingham (1979).

What these equations (1.58 and 1.59) show is that in order to obtain a large resolving
power with a given slit size it is necessary either to have a large grating size or a large
collimated beam (i.e., large L or B). This was the solution for the large coudé spectro-
graphs used from 1910 to 1980. Equation 1.58 shows the merit of the échelle solution;
that is, to use large fg. However, as shown by equation 1.59, the usefulness of increasing
the blaze angle is not without limits; that is, for R2 gratings, sin g = 0.89 while for R4
sinfg = 0.97. Also, if the dimensions of the collimated beam are such that B > L cos «
then equation 1.58 is more appropriate. As will be shown (Section 1.1.12) although the
overfilled grating will result in the loss of light, it is still possible to improve the overall
throughput of the spectrograph for a given product of R and 6;.

Fibre-fed spectrographs

The effect of FRD has been described in Section 1.1.6. The FRD term p modifies the
resolving power of a fibre-fed spectrograph to

2B tanfg
- d 1.
R pBs D(1 — tan fp tan 6) an (1.60)
2L sin 05 cos 0
=~ T D 1.61
A p0s D (1.61)

It is relevant to note that because the FRD of a given fibre depends only on the input
focal ratio, this is the only means by which the focal ratio of the telescope can effect the
resolving power of a fibre-fed spectrograph.

Effective fibre resolving power

The resolving power of a slit limited spectrograph will be given by equations 1.58 and
1.59 only if the seeing disk is considerably larger that the slit width, thereby providing a
uniformly illuminated rectangle. If the seeing disk only partially fills the spectrograph’s
entrance slit, or if the entrance slit is entirely absent, then the resolving power equations
must be somewhat modified. This will not be discussed here. However, for a discussion
see Schroeder (2000, pp 318-320).

The entrance slit if a fibre is always circular and essentially uniform in surface bright-
ness. The effective resolving power R’ of a circular fibre of diameter d can be calculated
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Figure 1.11: The flux weighted fibre
width is calculated by weighting each
chord by the area it encompasses.

by subdividing the fibre into many narrow slits which have widths w; equal to the chord
which is parallel to the direction of dispersion. This is shown in Figure 1.11. Each slit will
then have a weighting which equals the fraction of the total flux which the slit encloses.
This fraction is proportional to the area of each slit, where the normalized area A; of each
slit is

(1.62)

Therefore, the flux weighted fibre width is given by
W= ZwiAi , (1.63)
i=1

In the limit where n— oo Ay;—dy and A; — wdy equation 1.63 can be solved to give

w=d . (1.64)
3

This factor was first derived by Vaughnn (1994), although he gave an expression for the
flux-weighted slit width of a fibre which has been reimaged onto a slit which is smaller
than the fibre diameter (or alternatively, the slit could be imprinted directly on the fibre
exit face). If the slit width is ws the flux-weighted slit width becomes

W = % d(l . (1 . (%)2)3/2) % , (1.65)

where the relative transmission 7" of the clipped fibre is given by

T = 1+%(% (1— (%)2>U2— cos (%)) . (1.66)
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Obviously, if ws =d, T =1, and w = 8 /3w d. Hence, the effective resolving power of a
(fully illuminated) fibre is

R = —R

(1.67)

Q

0.849

While the above shows that a fibre will deliver a resolving power that is considerably
better than the resolving power that can be achieved with a uniformly illuminated slit
with a width equal to the diameter of the fibre, the convention is to measure the full-
width at half-maximum (FWHM) of a monochromatic light source which can be either a
single laser line or the emission lines formed by an appropriate calibration light source.
This method makes the assumption that the profile of a single line, after extraction to
one-dimension (hereinafter called the line-spread function, or LSF) can be approximated
by a gaussian. In fact, as will be shown below, this will not be the case, and the resolving
power measured by this method will be quite different from that derived above.

The extracted profile (or LSF) of a fibre image can be determined by noting that the
extraction in one dimension of an elliptical fibre image produces another ellipse which will
have a normalized height of one and a minor-axis equal to the fibre image width w. That
is, the equation of an extracted fibre will be:

m=1/1- — YoY% (1.68)

In order to approximate the observed fibre profile I,,s the extracted profile is then con-
volved with a one-dimensional point-spread function (PSF); i.e.,

Tobs = I ® It - (1.69)

The effect of the PSF will depend on the image quality that the spectrograph produces. To
show how image quality affects the final line profile gaussians with FWHMs which varied
in proportion to the fibre image width were used. The FWHM of the PSF varied from
Wpst = 0.1w to wpe = 0.5w. The changing ratio can be used to represent either a change
in image quality or a change in the size of the fibre image.

The FwHM of the fibre profiles can now be determined by fitting a gaussian to the
extracted and convolved fibre profile. It appears reasonable to insist that the fitted
gaussian is normalized to have the same equivalent width as the fibre profile, although
in practice this makes little difference to the parameters of the fitted gaussian (assuming
both width and height are variables). The results are shown in Figure 1.12. The fibre
profiles determined using this method are shown in Figure 1.13. Tt is noted that the fit
to a gaussian is very poor when the effect of the PSF is small, although as the relative
effect of the PSF increases the approximation by a gaussian becomes more appropriate.
The limit of the FWHM as wpsr — 0 is wrwnm = 0.682w. Hence, if the spectrograph has
perfect optics, the resolving power would be measured as

R
R(wpsf = 0) ~ m s (170)
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0.9f H
= 0.851 R
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and to a good approximation, the resolving power as a function of wp is given by

R(wyst) ~ R(wpst =0) (1.71)
1+ 16w

In practice, the optics of the spectrograph (as well as the properties of the ccp)
will tend to degrade the resolving power. If a degradation in resolving power (which is
measured using the above method) due to optical performance of 10% is acceptable, then
the FWHM of the PSF should be no more than 0.35 — 0.40 x w.

Effect of line tilt

As described in Section 1.1.8 the effect of a non-zero v will be to tilt the dispersed slit
image by an amount ¢ given by equation 1.27. This will have the effect of decreasing the
resolving power. In the case of a slit spectrograph it may be possible to counter-rotate
the slit in order to minimize this tilt, although as pointed out by Schroeder and Hilliard
(Schroeder and Hilliard, 1980) the throughput-resolution product remains constant.

The entrance slit of a fibre-fed spectrograph cannot however be rotated. It will be
stated without proof that the extracted profile of a tilted fibre is simply equation 1.68
where the fibre image width w is replaced by the full-width w, of the tilted fibre (equation
1.44). Hence, the extracted profile of a tilted fibre will be given by

472 — W, We
s <zr<< — . 1.72
w2 2 ~7S 7 (1.72)

I'=/1-

The observed fibre profile can now be obtained by convolving equation 1.72 with a one-
dimensional PSF. As above, the FWHM of this profile can be measured. This is shown in
Figure 1.14 and the measured equivalent widths are shown in Figure 1.15.

The relative change in FWHM is shown in Figure 1.16. It can be seen that as image
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quality becomes worse the relative effect of line tilt decreases. If, for a given image quality
the resolving power at zero line tilt is R'(¢ = 0) (see equation 1.71) then the resolving
power as a function of line tilt is given by

w

R(¢)=R(¢=0— . (1.73)

We
In the small angle approximation this reduces to
R'(¢ =0)
V14 97
where it should be noted that the fibre image height h must also be considered. Hence,

in order for line tilt to degrade the resolving power by less than 10% it can be seen that
a line tilt of up to ¢ =~ 20° can be tolerated.

R(¢) = (1.74)
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Figure 1.13: Synthetic fibre images and profiles. The output from a circular fibre has been convolved
with a gaussian PSF (left). The PSF’s have a FWHM ranging from 0.1 to 0.5 times the fibre image width
w. The extracted profile (bold) is then normalized and fitted by a gaussian (dot-dashed). Note that the
unconvolved fibre profile (dotted) is well approximated by a gaussian only when the influence of the PSF

is large.
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Total resolving power

The above equations (equations 1.58, 1.59, 1.60 and 1.61) give only the slit or fibre limited
resolving power of a given spectrograph. The total effective resolving power will however
be degraded by several additional factors; for example by imperfect optics and detectors.
If these degrading factors can each be assigned to resolving power influences R;, then the
total resolving power of the spectrograph R, will be given by,

n

1 1

i=1

where it is assumed that each factor can be modeled by a guassian function with a FWHM
given by R;. Some of the contributors to the total resolving power include the following:

e the diffraction limited resolving power given by Rg; = mN, where N is the to-
tal number of grooves being illuminated. The diffraction limit will invariably be
somewhat degraded by imperfections in the grating surface; for instance, surface
irregularities and groove ruling errors.

e optical aberrations. The use of imperfect optics, even if they are diffraction limited,
is unavoidable.

e detector properties. These include the effects of the depletion layer and charge
migration in silicon detectors. The effects of finite pixel sampling must also be
considered.

The optical quality and detector properties must therefore be chosen in order to ensure
that the degradation is acceptable. While all of the above influences are unavoidable,
there may be other transient effects such as focus errors or image motion which will
further degrade the image quality of the spectrograph. The design of the spectrograph
should attempt to mitigate all such effects.
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1.1.11 Efficiency

Upon striking a grating at an angle o a collimated beam will be diffracted through an
angle 8, which depends on the wavelength A and the grating groove spacing o according
to the grating equation (equation 1.1.1). The intensity I of this diffracted beam results

from the combination of an interference function (/F') and a blaze function (BF); that
is,

I=1IFx BF . (1.76)

The interference function that results from a grating which has a total of IV equally spaced

grooves is given by
IF— sin No/ \ 2 (1.77)
~ \ Nsinv/ ’ '
where 2/ is the phase difference between rays diffracted off the centres of adjacent grooves.

The blaze function is given by
. 2
BF = (Sm”> : (1.78)
v

where v is the phase difference between the centre and edge of an individual groove. These
phase differences are given by

2
2V = %(sina#—sinﬁ) , and (1.79)
v = %(Sinaﬂinﬁ) . (1.80)

Each individual grating facet has a width o5 which may be smaller than the groove spacing
o in which case the blaze function will be broadened.

The diffracted intensity pattern for a single wavelength is shown in Figure 1.17. It

i /T 1 Figure 1.17: The
/'/ \ diffracted intensity of a
! \ single wavelength  (solid
0.8f ] \ 1 line). The blaze function
> / \ (dashed line) modulates the
@ h \ interference function, which
2 0.6F / \ 1 is maximum when the order
'é /' \‘ number m is an integer.
E ; \ The intensity in diffracted
e 04r ! \ 1 orders (m # 0) is low.
! \
/ \\
0.2} 1 \ .
0 ”——_ﬂ\\\\ //Av M ﬁ\\ "”z\_§~\\
-3 -2 -1 0 1 2 3

Order number (absolute)

can be seen that the majority of the energy incident on the grating is returned in the

zeroth order (m = 0) where it is simply reflected. Only a small portion of the energy is
diffracted into other orders.
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Blaze function

The purpose of blazing a grating is to shift the blaze function so that the maximum
diffracted intensity of a given wavelength coincides with chosen diffraction order. The
phase difference between successive grooves (equation 1.80) is now given by

wo!

v= Ts(sin(a — 0p) +sin(8 — 0g)) (1.81)

where o, is the effective size of each facet (see Figure 1.18). The effective facet size (when
o> f[is

, O0cosq

1.82
s cos '’ ( )

which should be compared to the size of a clear facet oy, which is o3 = o cos 0.

N B
/ a
// eB
? L — o

Os 0
T Figure 1.18: The effective facet size
A of a blazed grating is reduced be-

VN - cause of shadowing (after Schroeder,

2000).

The normalized intensity of a wavelength diffracted by a grating blazed at g = 63.5°

is shown in Figure 1.19. The wavelength has been chosen so that it coincides with the
maximum of the blaze function which occurs in order m = 40.
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Absolute efficiency

In order to calculate the efficiency of an échelle grating it is necessary to determine the
distribution of light of a given wavelength across all possible orders. A wavelength that
is not at the centre of the blaze function will have a significant fraction of its energy
diffracted into other orders. This is shown in Figure 1.20. The method prescribed by

1r e 1 Figure 1.20: A method for
\ computing the efficiency of an
/ \ échelle grating. See text for
0.8} : ! 1 details.
1 Al
2 'l ‘l
7] ! \
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o ! \
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0.2fF / | i
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! \
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o e -l\\\\ /r i e l-\\\ etk 3
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Order number (relative)

Schroeder and Hilliard (1980) is simply to sum the intensities across all possible orders
and then derive the fraction that remains in the order of interest. However, as commented
by Bottema (1981), this definition of efficiency is not quite correct, although it is conceded
that in most cases of interest the results will be correct (Schroeder, 1981). Therefore, the
absolute diffractive efficiency of an échelle grating for a wavelength in order m is

IAm:O
T = , 1.83
" Tameo + > amzo Lam (1:83)

where Am and I are the relative order number and intensity respectively.

The relative efficiency of an échelle grating which is blazed at 6 = 63° is shown in
Figure 1.21. This grating is illuminated at # = 0°, which means that the wavelength free
spectral range is equal to the FWHM of the blaze function. If the grating is illuminated
in a non-Littrow mode (6 # 0) then the fraction of the blaze function that is covered by
one free spectral range is increased by a factor cos 8/ cos a; that is

A
Adpwin = fSR : (1.84)

where r is the anamorphic magnification. The blaze function for a range of Littrow angles
(#), such that 1.0 < 1/r < 1.5 is shown in Figure 1.22. Note that the values of r refers to
the order centre only.
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Relative efficiency

Diffractive efficiency
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1.1.12 Overfilling

Although it has been assumed thus far that the collimated beam is matched to the pro-
jected size of the échelle grating, it is not always possible to do this. As shown in Figure
1.23, the amount by which a grating is overfilled is a function of the size of the grating
(W and L) and the angle of illumination (o). Depending on the size of the grating, the

""""
. .

.
.
i\
.

Echelle grating

/

Figure 1.23: The overfilling of an échelle grating. The collimated beam, which has a diameter B,
projects to an ellipse on the échelle grating (width W, length L). This projects to a height L' = Lcosa
in the collimated beam.

elliptical footprint of the collimated beam may overfill the grating either perpendicular or
parallel to the direction of the rulings (or both, as shown in Figure 1.23). If, as is shown
in Figures 1.24a and 1.24b, we consider the overfilling in each of the directions separately
then the fraction F' of a collimated beam that is incident on a grating is given by

F=Fy+F -1, (1.85)

where Fw and Fy, are the fractions of the beam captured when the overfilling in the
parallel and perpendicular directions respectively. Once the grating has been projected
into the collimated beam these fractions may be calculated by integrating the equation
of a circle, with appropriate limits. That is,

w/2 B2

Fw = 7rB2 — —zdx (1.86)
L’/2 B2

F, = 7rB2/ \/——xdx : (1.87)
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B/Z_\ /2 Figure 1.24: The grating may be

overfilled parallel and perpendicular

\ to the rulings. The fraction F' of the
collimated beam that is incident on the

F E échelle grating may be computed by
g L considering the amount the grating is

overfilled parallel (Fy) and perpendic-
ular (F1,) to the ruling separately. See
text for details.

W/2 B/2

(a) W (b) L

In polar coordinates, these equations become

4 w/2

Fy = —/ sin0dd | (1.88)
m Ow
4 w/2

R = —/ sin?df (1.89)
T oL

where the polar angle limits 6w and 6y, are given by

!

w
cos Oy = ] and cosfp = (1.90)
Evaluating equations 1.88 and 1.89 gives
4 1 1.
41r 1 1 .
K = - |:Z — §0L + 1 sin 20L:| ) (1.92)

If W > B, and/or L' > B, then the grating is not overfilled (or overfilled in one direction
only) and consequently either 6y, = 0 or 6, = 0. Hence, either Fy = 1 or F}, = 1
depending on the direction of overfilling.
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1.2 Design of échelle spectrographs

1.2.1 Choice of échelle

The choice of grating is one of the most fundamental choices in the design of an échelle
spectrograph. In the following sections some factors which influence this choice will be
discussed.

Beam size

For a given échelle grating with a blaze angle #g which is used to obtain a given resolving
power R it is not necessarily the case that the ideal beam width will be the width of
the échelle grating W. It has been pointed out by Diego and Walker (1985) (see also
Walker and Diego, 1985) that the échelle grating may be considerably overfilled without
compromising throughput. This is because while the grating becomes less efficient as the
beam size increases (due to overfilled light being lost) the angular size of the slit on the
sky can be increased in order to maintain a constant resolving power.

The effect is illustrated in Figures 1.25a and 1.25b. Here an R2 échelle with W x L =
300 x 840mm is illuminated (in Littrow configuration) by a beam which can vary in
diameter. This is done in practice by varying the telescope focal ratio. The angular slit
width is varied so that a constant resolving power of R = 25000 is maintained at all beam
sizes. The efficiency of the grating is therefore a function of both beam size and seeing.
Figure 1.25b shows the throughput relative to a beam size of 300 mm. For small seeing
values it can be seen that increasing the beam size leads to rapidly decreasing throughput
as the slit throughput always remains high. However, at larger values of seeing, the
throughput of the spectrograph actually increases as the beam size is increased. This is
because the overfilling of the échelle becomes increasingly mitigated by the larger angular
slit width.
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Figure 1.25: The absolute (a) and relative (b) efficiency for an R2 échelle grating with W x L = 300 x 840
for a resolving power of R = 25000 as a function of beam size and atmospheric seeing. Open circles
indicate the most efficient beam size as a function of seeing.
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Using such an analysis, for a given telescope and échelle grating combination, it is
possible to choose an optimum beam size, where the weighting function would depend on
the expected seeing conditions. A more detailed analysis would require that the effects of
the secondary obstruction be considered (for directly fed spectrographs) and/or the effects
of non-uniform illumination of the échelle grating (due, for instance, to the incomplete
radial scrambling of the fibre far-field).

Blaze angle

As is shown in the following section, the choice of blaze angle will have little direct impact
on the cross-dispersion. However, the blaze angle has a significant effect on the collimator
and camera properties. These will be discussed in Section 1.2.3. For a further discussion of
the choice of échelle grating blaze angle, and its implications on the spectrograph design,
the reader is referred to Section 7?7 and to Hearnshaw et al. (1999).

Method of cross-dispersion

The amount of inter-order space can be tuned by altering the properties of the échelle
grating. As shown above (equations 1.46 and 1.47) the inter-order spacing depends on
the free spectral range of the échelle grating. That is, if the wavelength extent from one
order to the next is increased, while the cross-dispersion remains constant, then the inter-
order spacing will increase accordingly. Given that the free spectral range depends most
sensitively on the grating groove spacing (equation 1.14), simply changing o will change
the inter-order spacing. If the échelle grating is more coarsely ruled (o increased) then
the free spectral range will increase, and therefore the total number of orders over a given
wavelength range will decrease. The effect this will have on the spectral format is shown
in Figure 1.26. One consequence of changing the échelle ruling density simply to increase
the inter-order spacing is that the angular width of the orders also increases. This might
be a problem if the angular field of view of the camera and detector is limited.

T = 75 grooves/mm T = 100 grooves/mm
—// //
— S —
e — —

—— ———
S —

———————— e
———————— —

Figure 1.26: The effect of changing the échelle groove ruling density on order separation. The same
(prism) cross-disperser and camera is used the two examples however the échelle groove spacing has
changed as indicated.

Changing the blaze angle of the échelle grating has relatively little effect on the spectral
format. That is, as discussed above in Section 1.1.9, the order separation Ay, for a given
échelle and cross-disperser combination, is given by

Ay = Const. X , (1.93)

sin 0]3
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(i.e., equations 1.47). Therefore, changing from an R2 grating to an R4 grating will
decrease the order spacing by less than 10%. A description of the methods of cross-
dispersion follows.

1.2.2 Cross dispersion

As has already being discussed, any combination of order number m and wavelength A\
that satisfies the grating equation (equation 1.1) will have equal diffraction angles. If
the wavelength coverage of interest spans more than a single free spectral range it will
therefore be necessary to introduce dispersion in a direction that is orthogonal to the
main échelle dispersion. Some possibilities for such cross-dispersion are discussed below.

Grating cross dispersion

The angular dispersion of a grating cross-disperser is

dg My

_— = 1.94
dAxp  ogcosfB; (1.94)

where the grating order number m, is generally low and the grating ruling density o,
is high. Because the overall angular dispersion is quite low, the cross-disperser will be
blazed at quite a shallow angle (i.e, 3, is small). The physical separation between orders
is given by combining equation 1.94 with equation 1.47. That is,

2
My A

A = m .
Y Jea 0g cos 3y 2sin fg cos 0

= Const. x \3 . (1.95)

Prism cross dispersion

When using a prism for cross-dispersion the angle of incidence is usually such that the
dispersed rays are very nearly parallel to the base of the prism (see Figure 1.27). While

Figure 1.27: A prism used at minimum
deviation.

this is close to the situation where a prism with a given apex angle has the least overall
dispersion, this arrangement minimizes the total path length (of a wavelength which
travels parallel to the base) and lessens the effects of polarization and reflection losses at
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each face. The size of the prism is also minimized. The angular dispersion of a prism
used near minimum deviation is given by

dg b dn
e =227 1.96
dA\xp Bd\ '’ (1.96)
where b is the length of the prism’s base and B is the diameter of the incident beam. The
ratio b/ B effectively determines the prism apex angle ap. That is,

b tant; ap

— 1.
B - cot 5 (1.97)

where 6; is the angle of incidence of a wavelength (for which the prism refractive index is
ny) such that

sin 6; = n, sin % . (1.98)
This is the angle of incidence of a wavelength which has a minimum path length through

the prism. Now, the refractive index of a prism can be approximated sing the Conrady
formula by

k
n(\) = ki + A—i , (1.99)
where k; and ko are constants, and hence the angular dispersion of a prism is
dg b ko
£ =9 1.1
dAxp B )3 (1.100)

The separation between orders produced by a prism can be found by substituting Equation
1.100 into Equation 1.47 which gives

bk A2
A = =2 cam s\ a - A
y / B A} 2sin g cos 0
1
= Const. x — . (1.101)
AB

Gratings or prisms?

The order separation for both prisms and gratings was derived above (equations 1.95 and
1.101). It was shown that the order separation was

Gratings : Ay = Const. x A3 and

Prisms : Ay = Const. X S

AB

This shows that the order separation given by a grating increases rapidly as the wavelength
increases (i.e, as the square of the wavelength), while the order separation decreases (at
a lesser rate) for a prism. This fact makes prisms particularly attractive in situations
where it is desirable to capture a large wavelength range on a single detector. That is, if
a prism and grating is chosen such that the total cross dispersion is the same (see Figure
1.28), the range of inter-order spacing of a grating will vary considerably. Generally this
forces the design of an échelle spectrograph with grating cross-dispersion to incorporate
several grating cross-dispersers so that the inter-order spacing at a chosen wavelength can
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(a) Grating cross dispersion (b) Prism cross dispersion

Figure 1.28: The relative order separation of gratings (right) and prisms (left).

be varied. However, a prism has relatively uniform inter-order spacing, and one prism (or
prismatic system) is sufficient for all wavelength regions. Alternatively, a combination of
gratings and prisms (or a grism) could be considered.

Another aspect to consider is the relative efficiency of grating and prism cross-dispersers.
It is generally the case that a high quality prism will have significantly higher efficiency
over a broader wavelength range than any grating. This is because gratings are subject
to the effects of the blaze function. A typical high efficiency surface relief grating will
have a FWHM which is about equal to the blaze wavelength, and hence may only be con-
sidered useful over a small wavelength range. Recently however high efficiency gratings
have been developed that have a periodic grating structure which arises from modulation
of the index of refraction of a thin layer of light sensitive material. Such gratings are
termed volume-phase holographic (VPH) gratings and are discussed further in Chapter
??. These gratings cannot however be used over more than a single decade of spectral
coverage and two or more gratings would still be required to cover a wavelength band
spanning the near-uv to the near-1R (i.e., the approximate pass-band of a high efficiency
CCD detector).

1.2.3 Collimator, camera and detector properties
Collimator

The required focal length of the collimator (f.) follows from the equality given by equa-
tion 1.23. That is,

1f
feor = ;%’IB : (1.102)
where the focal ration degradation factor p = 1 if the spectrograph is directly fed. The
actual collimator focal length is a completely free parameter as long as the equality given

by equation 1.23 is maintained.
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Camera

The focal length of the camera f.,,, is determined by noting that in order for the maximum
resolving power R, to be achieved the cCD must sample at least two resolution elements.
It therefore follows that

foam = ns;mp RiyaxSpix ot O (1 + tan O tan d) (1.103)

where ngump is the number of ccD pixels per resolution elements. Typically ngymp = 2 for
critical Nyquist sampling with pixels each having a size spix, giving

feam = RmaxSpixcot0p (1.104)

for small #. This shows that large blaze angle gratings require short focal length cameras.
However, because R = Const. x B tan fg, (equation 1.58) the monochromatic focal ratio
of the camera will be given by

fcg" = Const. X Spix - (1.105)
That it, for a given maximum attainable resolving power, the focal ratio of the spectro-
graph’s camera will depend only on the ccD pixel size. The effective focal ratio of a

spectrograph camera, which determines the camera’s actual size, depends rather more on
the location of the entrance pupil.

Detector

That the size of pixel chosen influences the camera’s focal length and/or the was pointed
out in the previous section. The number of pixels n;x required by a detector to completely
sample an order is given by
A
Npix = fcam ﬁFSR ’ (1106)
Spix

which, given equations 1.15 and 1.104, can be approximated to give

Rmax)\B
ix ~ . 1.107
"o o sin 0y ( )
Given that mAg & 20 sin fg, equation 1.107 can also be written as
2R pmax
Npix & ma , (1.108)

which shows that all high resolution spectrographs require large detectors if wavelength
coverage is complete. Often, for the sake of economy, compromises are made either in the
maximum resolving power and/or wavelength coverage.

1.2.4 Fibres

The use of fibres in astronomy was first suggested by Angel et al. (1977). Their idea,
which was made possible by the recent development of high quality fused silica fibres,
was to link numerous small aperture telescopes to a single instrument. Subsequently



1.2. Design of échelle spectrographs 35

fibres were used in multi-fibre applications such as the simultaneous observation of many
objects (for example, the Medusa spectrograph (Hill et al., 1980)), or to obtain spectra
over a two-dimensional area (for example, the DensePax fibre optic array (Barden and
Wade, 1988)). Both of these applications demonstrate that fibres contribute towards
considerable improvements in the efficiency of spectroscopic observations.

Another practical benefit of the use of fibres is that the instrument is removed from
the telescope. Hubbard et al. demonstrated the feasibility of this in 1979 (Hubbard et al.,
1979). This removes the constraints of size and weight of any fibre-coupled instrument,
while also allowing such an instrument to be placed in a potentially more stable envi-
ronment, where the effects of flexure, temperature, and pressure changes may be absent.
Hence fibres are of particular value for the high-precision measurement of radial velocities.

A further advantages of the use of fibres in precision spectroscopy is the ability of a
fibre to scramble the input image structure. This means that regardless of the distribution
of light on the input face of the fibre, the output face will appear more uniform. Hence,
systematic errors due to slit illumination may be reduced. This type of image scrambling
is referred to as “near-field” scrambling. It was also realized that the optics of a fibre-fed
instrument may be illuminated more uniformly due to the scrambling properties of a fibre.
That is, the angular distribution of rays exiting a fibre will not betray the distribution
that entered the fibre. This type of “far-field” scrambling also has the potential to increase
the stability of the spectrograph. However, as observed by Hunter and Ramsey (1992),
and predicted by Heacox (1987), while the azimuthal scrambling of rays in the far field
is nearly complete, the radial scrambling is not quite as good. These effects also impinge
subtly on the illumination of the slit exit (or the “near-field” image) and hence may cause
significant drifts in line profiles or positions. A method for increasing the scrambling via
means of a “double-scrambler” has been proposed by Brown (1990). The double-scrambler
is inserted in a break in the fibre and its purpose is to invert the positional and angular
dependence of the rays crossing the junction between the two fibre halves.

The implications of coupling a spectrograph to a telescope via optical fibres was dis-
cussed above in Sections 1.1.6, 1.1.8, 1.1.10.

1.2.5 Merit functions

A common merit function used for comparing spectrographs is the slit-resolving power
(R6;) product which follows from equation 1.61 (or equation 1.59). That is,

_ 2Lsinfg cosf

R, Py

(1.109)

As stated in Section 1.1.10, this equation shows that for a given resolving power and
angular slit size, a large telescope requires a large grating. A more complete merit function
would also take into account the throughput of the spectrograph, 7T'; i.e., T Rfs. This was
introduced by Jacquinot (1954) in a different form. However, as pointed out by Vaughnn
(1994), a more appropriate merit function would maximize the product of the signal-to-
noise ratio (for each spectral element) and the total number of resolution elements. This
is applicable because the performance of the spectrogragh is then intimately linked to the
telescope and its environment.
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